Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

T(x)=ex2+8xx4+7,T(x)=T(x) = \frac{e^{x^2 + 8x}}{\sqrt{x^4 + 7}},\quad T'(x) =

Full solution

Q. T(x)=ex2+8xx4+7,T(x)=T(x) = \frac{e^{x^2 + 8x}}{\sqrt{x^4 + 7}},\quad T'(x) =
  1. Apply Quotient Rule: To find the derivative of the function T(x)=ex2+8xx4+7T(x) = \frac{e^{x^2 + 8x}}{\sqrt{x^4 + 7}}, we will use the quotient rule and the chain rule. The quotient rule states that the derivative of a function that is the quotient of two other functions, u(x)v(x)\frac{u(x)}{v(x)}, is given by v(x)u(x)u(x)v(x)(v(x))2\frac{v(x)u'(x) - u(x)v'(x)}{(v(x))^2}. The chain rule allows us to differentiate composite functions.
  2. Identify u(x)u(x) and v(x)v(x): Let's identify u(x)u(x) and v(x)v(x) for the quotient rule. We have:\newlineu(x)=e(x2+8x)u(x) = e^{(x^2 + 8x)}\newlinev(x)=x4+7v(x) = \sqrt{x^4 + 7}\newlineNow we need to find the derivatives u(x)u'(x) and v(x)v'(x).
  3. Find u(x)u'(x): First, we find u(x)u'(x) using the chain rule. The derivative of eg(x)e^{g(x)} with respect to xx is eg(x)g(x)e^{g(x)}g'(x), where g(x)=x2+8xg(x) = x^2 + 8x. So we need to find the derivative of g(x)g(x), which is g(x)=2x+8g'(x) = 2x + 8.
  4. Find v(x)v'(x): Now we calculate u(x)u'(x):
    u(x)=e(x2+8x)(2x+8)u'(x) = e^{(x^2 + 8x)} \cdot (2x + 8)
  5. Apply Chain Rule: Next, we find v(x)v'(x). Since v(x)=x4+7v(x) = \sqrt{x^4 + 7}, we can rewrite this as (x4+7)12(x^4 + 7)^{\frac{1}{2}}. Using the chain rule, the derivative of h(x)nh(x)^n is nh(x)n1h(x)n \cdot h(x)^{n-1} \cdot h'(x), where h(x)=x4+7h(x) = x^4 + 7 and n=12n = \frac{1}{2}.
  6. Calculate u(x)u'(x): We calculate the derivative of h(x)h(x), which is h(x)=4x3h'(x) = 4x^3. Then we apply the chain rule to find v(x)v'(x):v(x)=12(x4+7)124x3v'(x) = \frac{1}{2} \cdot (x^4 + 7)^{-\frac{1}{2}} \cdot 4x^3
  7. Apply Quotient Rule: Simplify v(x)v'(x):v(x)=2x3x4+7v'(x) = \frac{2x^3}{\sqrt{x^4 + 7}}
  8. Substitute into Formula: Now we apply the quotient rule to find T(x)T'(x):T(x)=v(x)u(x)u(x)v(x)(v(x))2T'(x) = \frac{v(x)u'(x) - u(x)v'(x)}{(v(x))^2}
  9. Simplify Expression: Substitute u(x)u(x), u(x)u'(x), v(x)v(x), and v(x)v'(x) into the quotient rule formula:\newlineT(x)=x4+7ex2+8x(2x+8)ex2+8x2x3x4+7/(x4+7)T'(x) = \frac{\sqrt{x^4 + 7} \cdot e^{x^2 + 8x} \cdot (2x + 8) - e^{x^2 + 8x} \cdot 2x^3}{\sqrt{x^4 + 7}} / (x^4 + 7)
  10. Final Answer: Simplify the expression by combining terms and factoring out common factors where possible:\newlineT(x)=e(x2+8x)((2x+8)x4+72x3)x4+7T'(x) = \frac{e^{(x^2 + 8x)} \cdot ((2x + 8) \cdot \sqrt{x^4 + 7} - 2x^3)}{x^4 + 7}
  11. Final Answer: Simplify the expression by combining terms and factoring out common factors where possible:\newlineT(x)=ex2+8x((2x+8)x4+72x3)x4+7T'(x) = \frac{e^{x^2 + 8x} \cdot ((2x + 8) \cdot \sqrt{x^4 + 7} - 2x^3)}{x^4 + 7}We have found the derivative of T(x)T(x) with respect to xx. The final answer is:\newlineT(x)=ex2+8x((2x+8)x4+72x3)x4+7T'(x) = \frac{e^{x^2 + 8x} \cdot ((2x + 8) \cdot \sqrt{x^4 + 7} - 2x^3)}{x^4 + 7}

More problems from Find higher derivatives of rational and radical functions