Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(dy)/(dx)=3y, and 
y=2 when 
x=1.
Solve the equation.
Choose 1 answer:
(A) 
y=e^(3x-6)
(B) 
y=2e^(3x-3)
(C) 
y=2e^(3x+3)
(D) 
y=2e^(3x+1)

dydx=3y \frac{d y}{d x}=3 y , and y=2 y=2 when x=1 x=1 .\newlineSolve the equation.\newlineChoose 11 answer:\newline(A) y=e3x6 y=e^{3 x-6} \newline(B) y=2e3x3 y=2 e^{3 x-3} \newline(C) y=2e3x+3 y=2 e^{3 x+3} \newline(D) y=2e3x+1 y=2 e^{3 x+1}

Full solution

Q. dydx=3y \frac{d y}{d x}=3 y , and y=2 y=2 when x=1 x=1 .\newlineSolve the equation.\newlineChoose 11 answer:\newline(A) y=e3x6 y=e^{3 x-6} \newline(B) y=2e3x3 y=2 e^{3 x-3} \newline(C) y=2e3x+3 y=2 e^{3 x+3} \newline(D) y=2e3x+1 y=2 e^{3 x+1}
  1. Recognize First-Order Linear Homogeneous: Recognize that the given differential equation is a first-order linear homogeneous differential equation which can be solved using separation of variables.
  2. Separate Variables and Integrate: Separate the variables by dividing both sides by yy and multiplying both sides by dxdx to get 1y\frac{1}{y}dydy = 3dx3dx.
  3. Solve for Constant CC: Integrate both sides of the equation. The integral of (1/y)dy(1/y)\,dy is lny\ln|y|, and the integral of 3dx3\,dx is 3x3x.\newline(1/y)dy=3dx\int(1/y)\,dy = \int 3\,dx\newlinelny=3x+C\ln|y| = 3x + C, where CC is the constant of integration.
  4. Substitute and Find Particular Solution: Solve for the constant CC using the initial condition y=2y=2 when x=1x=1.\newlineln2=3(1)+C\ln|2| = 3(1) + C\newlineln(2)=3+C\ln(2) = 3 + C\newlineC=ln(2)3C = \ln(2) - 3
  5. Exponentiate to Solve for y: Substitute the value of CC back into the equation lny=3x+C\ln|y| = 3x + C to get the particular solution.\newlinelny=3x+ln(2)3\ln|y| = 3x + \ln(2) - 3
  6. Simplify the Equation: Exponentiate both sides to solve for yy.elny=e3x+ln(2)3e^{\ln|y|} = e^{3x + \ln(2) - 3}y=e3xeln(2)3y = e^{3x} \cdot e^{\ln(2) - 3}
  7. Simplify the Equation: Exponentiate both sides to solve for yy.elny=e3x+ln(2)3e^{\ln|y|} = e^{3x + \ln(2) - 3}y=e3xeln(2)3y = e^{3x} \cdot e^{\ln(2) - 3}Simplify the equation using properties of exponents.y=e3x(eln(2)e3)y = e^{3x} \cdot \left(\frac{e^{\ln(2)}}{e^3}\right)y=e3x(2e3)y = e^{3x} \cdot \left(\frac{2}{e^3}\right)y=2e3x3y = 2e^{3x - 3}

More problems from Quadratic equation with complex roots