Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(d)/(dx)[sin^(7)(x)]=?
Choose 1 answer:
(A) 
7sin^(6)(x)cos(x)
(B) 
7cos^(6)(x)
(C) 
7x^(6)cos(x^(7))
(D) 
cos(7x^(6))

ddx[sin7(x)]=? \frac{d}{d x}\left[\sin ^{7}(x)\right]=? \newlineChoose 11 answer:\newline(A) 7sin6(x)cos(x) 7 \sin ^{6}(x) \cos (x) \newline(B) 7cos6(x) 7 \cos ^{6}(x) \newline(C) 7x6cos(x7) 7 x^{6} \cos \left(x^{7}\right) \newline(D) cos(7x6) \cos \left(7 x^{6}\right)

Full solution

Q. ddx[sin7(x)]=? \frac{d}{d x}\left[\sin ^{7}(x)\right]=? \newlineChoose 11 answer:\newline(A) 7sin6(x)cos(x) 7 \sin ^{6}(x) \cos (x) \newline(B) 7cos6(x) 7 \cos ^{6}(x) \newline(C) 7x6cos(x7) 7 x^{6} \cos \left(x^{7}\right) \newline(D) cos(7x6) \cos \left(7 x^{6}\right)
  1. Apply Chain Rule: Apply the chain rule to the function sin7(x)\sin^{7}(x). The chain rule states that the derivative of a composite function f(g(x))f(g(x)) is f(g(x))g(x)f'(g(x))g'(x). In this case, f(u)=u7f(u) = u^{7} and g(x)=sin(x)g(x) = \sin(x), so we need to find the derivatives f(u)f'(u) and g(x)g'(x).
  2. Derivative of u7u^7: Find the derivative of f(u)=u7f(u) = u^7 with respect to uu. Using the power rule, (ddu)(un)=nu(n1)(\frac{d}{du})(u^n) = nu^{(n-1)}, we get: (ddu)(u7)=7u(71)=7u6(\frac{d}{du})(u^7) = 7u^{(7-1)} = 7u^6.
  3. Derivative of sin(x): Find the derivative of g(x)=sin(x)g(x) = \sin(x) with respect to xx.\newlineThe derivative of sin(x)\sin(x) with respect to xx is cos(x)\cos(x).\newlineddx(sin(x))=cos(x)\frac{d}{dx}(\sin(x)) = \cos(x).
  4. Apply Chain Rule Again: Apply the chain rule using the derivatives from Step 22 and Step 33.\newlineThe derivative of sin7(x)\sin^{7}(x) with respect to xx is:\newlineddx(sin7(x))=7(sin(x))6cos(x)\frac{d}{dx}(\sin^{7}(x)) = 7(\sin(x))^6 \cdot \cos(x).
  5. Match Result: Match the result with the given options.\newlineThe correct answer is (A)7sin6(x)cos(x)(A) 7\sin^{6}(x)\cos(x), which matches our result from Step 44.

More problems from Find derivatives of using multiple formulae