Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(d)/(dx)[arctan(-5x)]=?
Choose 1 answer:
(A) 
(-5)/(sqrt(1+25x^(2)))
(B) 
(-5)/(sqrt(1-25x^(2)))
(C) 
(-5)/(1+25x^(2))
(D) 
(-5)/(1-25x^(2))

ddx[arctan(5x)]=? \frac{d}{d x}[\arctan (-5 x)]=? \newlineChoose 11 answer:\newline(A) 51+25x2 \frac{-5}{\sqrt{1+25 x^{2}}} \newline(B) 5125x2 \frac{-5}{\sqrt{1-25 x^{2}}} \newline(C) 51+25x2 \frac{-5}{1+25 x^{2}} \newline(D) 5125x2 \frac{-5}{1-25 x^{2}}

Full solution

Q. ddx[arctan(5x)]=? \frac{d}{d x}[\arctan (-5 x)]=? \newlineChoose 11 answer:\newline(A) 51+25x2 \frac{-5}{\sqrt{1+25 x^{2}}} \newline(B) 5125x2 \frac{-5}{\sqrt{1-25 x^{2}}} \newline(C) 51+25x2 \frac{-5}{1+25 x^{2}} \newline(D) 5125x2 \frac{-5}{1-25 x^{2}}
  1. Use Chain Rule: Use the chain rule for derivatives: (ddx)[f(g(x))]=f(g(x))g(x)(\frac{d}{dx})[f(g(x))] = f'(g(x)) \cdot g'(x).
  2. Identify Functions: Identify f(x)f(x) as arctan(x)\arctan(x) and g(x)g(x) as 5x-5x.
  3. Find f(x)f'(x): Find the derivative of f(x)=arctan(x)f(x) = \arctan(x), which is f(x)=11+x2f'(x) = \frac{1}{1+x^2}.
  4. Find g(x)g'(x): Find the derivative of g(x)=5xg(x) = -5x, which is g(x)=5g'(x) = -5.
  5. Apply Chain Rule: Apply the chain rule: (ddx)[arctan(5x)]=(11+(5x)2)×(5)(\frac{d}{dx})[\arctan(-5x)] = (\frac{1}{1+(-5x)^2}) \times (-5).
  6. Simplify Expression: Simplify the expression: 11+25x2\frac{1}{1+25x^2} * 5-5 = 51+25x2-\frac{5}{1+25x^2}.

More problems from Find derivatives of using multiple formulae