Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(d)/(dx)[arccos((x)/(2))]=?
Choose 1 answer:
(A) 
(1)/(sqrt(1-(x^(2))/(4)))
(B) 
(-1)/(sqrt(1-(x^(2))/(4)))
(c) 
(1)/(2sqrt(1-(x^(2))/(4)))
(D) 
(-1)/(2sqrt(1-(x^(2))/(4)))

ddx[arccos(x2)]=? \frac{d}{d x}\left[\arccos \left(\frac{x}{2}\right)\right]=? \newlineChoose 11 answer:\newline(A) 11x24 \frac{1}{\sqrt{1-\frac{x^{2}}{4}}} \newline(B) 11x24 \frac{-1}{\sqrt{1-\frac{x^{2}}{4}}} \newline(c) 121x24 \frac{1}{2 \sqrt{1-\frac{x^{2}}{4}}} \newline(D) 121x24 \frac{-1}{2 \sqrt{1-\frac{x^{2}}{4}}}

Full solution

Q. ddx[arccos(x2)]=? \frac{d}{d x}\left[\arccos \left(\frac{x}{2}\right)\right]=? \newlineChoose 11 answer:\newline(A) 11x24 \frac{1}{\sqrt{1-\frac{x^{2}}{4}}} \newline(B) 11x24 \frac{-1}{\sqrt{1-\frac{x^{2}}{4}}} \newline(c) 121x24 \frac{1}{2 \sqrt{1-\frac{x^{2}}{4}}} \newline(D) 121x24 \frac{-1}{2 \sqrt{1-\frac{x^{2}}{4}}}
  1. Write Function: First, let's write down the function we need to differentiate: arccos(x2)\arccos\left(\frac{x}{2}\right).
  2. Apply Chain Rule: Now, we use the chain rule. The derivative of arccos(u)\arccos(u) with respect to uu is 11u2-\frac{1}{\sqrt{1-u^2}}. Here, u=x2u = \frac{x}{2}.
  3. Differentiate uu: Differentiate u=x2u = \frac{x}{2} with respect to xx to get dudx=12\frac{du}{dx} = \frac{1}{2}.
  4. Use Chain Rule: Now, apply the chain rule: (ddx)arccos(u)=darccos(u)dududx(\frac{d}{dx})\text{arccos}(u) = \frac{d \text{arccos}(u)}{du} * \frac{du}{dx}.
  5. Plug in Derivatives: Plug in the derivatives: (\frac{d}{dx})\arccos(\frac{x}{\(2\)}) = -\frac{\(1\)}{\sqrt{\(1\)-(\frac{x}{\(2\)})^\(2\)}} \times \frac{\(1\)}{\(2\)}\.
  6. Simplify Expression: Simplify the expression: \((\frac{d}{dx})\arccos(\frac{x}{2}) = -\frac{1}{2\sqrt{1-\frac{x^2}{4}}}.
  7. Final Derivative: So, the derivative of arccos(x2)\arccos\left(\frac{x}{2}\right) with respect to xx is 121(x24)\frac{-1}{2\sqrt{1-\left(\frac{x^{2}}{4}\right)}}.

More problems from Find derivatives of using multiple formulae