Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

13x+3yamp;=4 2x4amp;=2y\begin{aligned} \dfrac{1}{3}x + 3y &= 4 \ 2x - 4 &= 2y \end{aligned}

Full solution

Q. 13x+3y=4 2x4=2y\begin{aligned} \dfrac{1}{3}x + 3y &= 4 \ 2x - 4 &= 2y \end{aligned}
  1. Solve for y: First, solve the second equation for y y :\newline2x4=2y 2x - 4 = 2y \newline2y=2x4 2y = 2x - 4 \newliney=x2 y = x - 2
  2. Substitute into first equation: Substitute y=x2 y = x - 2 into the first equation:\newline13x+3(x2)=4 \frac{1}{3}x + 3(x - 2) = 4
  3. Simplify the equation: Simplify the equation:\newline13x+3x6=4 \frac{1}{3}x + 3x - 6 = 4
  4. Combine like terms: Combine like terms:\newline13x+3x=10 \frac{1}{3}x + 3x = 10
  5. Convert to common denominator: Convert 3x 3x to a fraction with the same denominator:\newline13x+93x=10 \frac{1}{3}x + \frac{9}{3}x = 10
  6. Combine the fractions: Combine the fractions:\newline103x=10 \frac{10}{3}x = 10
  7. Solve for x: Solve for x x :\newlinex=3 x = 3
  8. Substitute back into y: Substitute x=3 x = 3 back into y=x2 y = x - 2 :\newliney=32 y = 3 - 2 \newliney=1 y = 1

More problems from Find equations of tangent lines using limits