Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the area of the region between the graphs of 
f(x)=sqrt(x+1) and 
g(x)=2x-4 from 
x=0 to 
x=3 ?
Choose 1 answer:
(A) 
(23)/(3)
(B) 
(5)/(3)
(C) 
(14)/(3)
(D) -3

What is the area of the region between the graphs of f(x)=x+1 f(x)=\sqrt{x+1} and g(x)=2x4 g(x)=2 x-4 from x=0 x=0 to x=3 x=3 ?\newlineChoose 11 answer:\newline(A) 233 \frac{23}{3} \newline(B) 53 \frac{5}{3} \newline(C) 143 \frac{14}{3} \newline(D) 3-3

Full solution

Q. What is the area of the region between the graphs of f(x)=x+1 f(x)=\sqrt{x+1} and g(x)=2x4 g(x)=2 x-4 from x=0 x=0 to x=3 x=3 ?\newlineChoose 11 answer:\newline(A) 233 \frac{23}{3} \newline(B) 53 \frac{5}{3} \newline(C) 143 \frac{14}{3} \newline(D) 3-3
  1. Understand the problem: Understand the problem.\newlineWe need to find the area between two curves, f(x)f(x) and g(x)g(x), from x=0x=0 to x=3x=3. The area between two curves is found by integrating the difference between the functions over the given interval.
  2. Set up the integral: Set up the integral to find the area between the curves.\newlineThe area AA is given by the integral from x=0x=0 to x=3x=3 of the top function minus the bottom function. We need to determine which function is on top (greater yy-value) for the interval [0,3][0,3].
  3. Compare the functions: Compare the functions at a point in the interval to determine which is on top. Let's evaluate both functions at x=1x=1 (a point within the interval [0,3][0,3]): f(1)=1+1=2f(1) = \sqrt{1+1} = \sqrt{2} g(1)=2(1)4=2g(1) = 2(1)-4 = -2 Since \sqrt{2} > -2, f(x)f(x) is on top of g(x)g(x) in the interval [0,3][0,3].
  4. Write the integral: Write the integral for the area.\newlineA=03(f(x)g(x))dxA = \int_{0}^{3} (f(x) - g(x)) \, dx\newlineA=03(x+1(2x4))dxA = \int_{0}^{3} (\sqrt{x+1} - (2x-4)) \, dx
  5. Calculate the integral: Calculate the integral.\newlineA=03(x+12x+4)dxA = \int_{0}^{3} (\sqrt{x+1} - 2x + 4) \, dx\newlineThis requires us to integrate term by term.
  6. Integrate each term separately: Integrate each term separately.\newlineThe integral of x+1\sqrt{x+1} with respect to xx is 23(x+1)32\frac{2}{3}\cdot(x+1)^{\frac{3}{2}}.\newlineThe integral of 2x-2x with respect to xx is x2-x^2.\newlineThe integral of 44 with respect to xx is 4x4x.\newlineSo, A=[23(x+1)32x2+4x]A = \left[\frac{2}{3}\cdot(x+1)^{\frac{3}{2}} - x^2 + 4x\right] from xx00 to xx11.
  7. Evaluate the antiderivative: Evaluate the antiderivative at the upper and lower bounds and subtract.\newlineA=[(23)(3+1)3232+43][(23)(0+1)3202+40]A = \left[\left(\frac{2}{3}\right)\cdot\left(3+1\right)^{\frac{3}{2}} - 3^2 + 4\cdot3\right] - \left[\left(\frac{2}{3}\right)\cdot\left(0+1\right)^{\frac{3}{2}} - 0^2 + 4\cdot0\right]\newlineA=[(23)4329+12][(23)1320+0]A = \left[\left(\frac{2}{3}\right)\cdot4^{\frac{3}{2}} - 9 + 12\right] - \left[\left(\frac{2}{3}\right)\cdot1^{\frac{3}{2}} - 0 + 0\right]\newlineA=[(23)89+12][(23)10+0]A = \left[\left(\frac{2}{3}\right)\cdot8 - 9 + 12\right] - \left[\left(\frac{2}{3}\right)\cdot1 - 0 + 0\right]\newlineA=[1639+12][23]A = \left[\frac{16}{3} - 9 + 12\right] - \left[\frac{2}{3}\right]\newlineA=(163+363273)(23)A = \left(\frac{16}{3} + \frac{36}{3} - \frac{27}{3}\right) - \left(\frac{2}{3}\right)\newlineA=(253)(23)A = \left(\frac{25}{3}\right) - \left(\frac{2}{3}\right)\newlineA=233A = \frac{23}{3}

More problems from Find equations of tangent lines using limits