Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the area of the region between the graphs of 
f(x)=x^(2)+12 x and 
g(x)=3x^(2)+10 from 
x=1 to 
x=4 ?
Choose 1 answer:
(A) 77
(B) 
(64)/(3)
(C) 18
(D) 45

What is the area of the region between the graphs of f(x)=x2+12x f(x)=x^{2}+12 x and g(x)=3x2+10 g(x)=3 x^{2}+10 from x=1 x=1 to x=4 x=4 ?\newlineChoose 11 answer:\newline(A) 7777\newline(B) 643 \frac{64}{3} \newline(C) 1818\newline(D) 4545

Full solution

Q. What is the area of the region between the graphs of f(x)=x2+12x f(x)=x^{2}+12 x and g(x)=3x2+10 g(x)=3 x^{2}+10 from x=1 x=1 to x=4 x=4 ?\newlineChoose 11 answer:\newline(A) 7777\newline(B) 643 \frac{64}{3} \newline(C) 1818\newline(D) 4545
  1. Set up integral: First, we need to set up the integral to find the area between the two curves. The area AA can be found by integrating the difference between the functions f(x)f(x) and g(x)g(x) from x=1x=1 to x=4x=4.A=x=1x=4(f(x)g(x))dxA = \int_{x=1}^{x=4} (f(x) - g(x)) \, dx
  2. Write functions: Now we need to write down the functions f(x)f(x) and g(x)g(x) and find the difference f(x)g(x)f(x) - g(x).
    f(x)=x2+12xf(x) = x^2 + 12x
    g(x)=3x2+10g(x) = 3x^2 + 10
    The difference is:
    f(x)g(x)=(x2+12x)(3x2+10)=2x2+12x10f(x) - g(x) = (x^2 + 12x) - (3x^2 + 10) = -2x^2 + 12x - 10
  3. Integrate difference: Next, we integrate the function 2x2+12x10-2x^2 + 12x - 10 from x=1x=1 to x=4x=4.
    A = x=1x=4(2x2+12x10)dx\int_{x=1}^{x=4} (-2x^2 + 12x - 10) \, dx
    To integrate, we find the antiderivative of 2x2+12x10-2x^2 + 12x - 10.
    Antiderivative: (2/3)x3+6x210x(-2/3)x^3 + 6x^2 - 10x
  4. Evaluate antiderivative: We now evaluate the antiderivative from x=1x=1 to x=4x=4.
    A=[(23)x3+6x210x]A = \left[\left(-\frac{2}{3}\right)x^3 + 6x^2 - 10x\right] from x=1x=1 to x=4x=4
    A=[(23)(4)3+6(4)210(4)][(23)(1)3+6(1)210(1)]A = \left[\left(-\frac{2}{3}\right)(4)^3 + 6(4)^2 - 10(4)\right] - \left[\left(-\frac{2}{3}\right)(1)^3 + 6(1)^2 - 10(1)\right]
  5. Calculate values: Calculate the values at x=4x=4 and x=1x=1.
    A=[(23)(64)+6(16)40][(23)(1)+6(1)10]A = [(-\frac{2}{3})(64) + 6(16) - 40] - [(-\frac{2}{3})(1) + 6(1) - 10]
    A=[(1283)+9640][(23)+610]A = [(-\frac{128}{3}) + 96 - 40] - [(-\frac{2}{3}) + 6 - 10]
    A=[(1283)+56][(23)4]A = [(-\frac{128}{3}) + 56] - [(-\frac{2}{3}) - 4]
  6. Simplify expression: Simplify the expression.\newlineA=(128+168)3(212)3A = \frac{{(-128 + 168)}}{3} - \frac{{(-2 - 12)}}{3}\newlineA=403143A = \frac{{40}}{3} - \frac{{-14}}{3}\newlineA=403+143A = \frac{{40}}{3} + \frac{{14}}{3}\newlineA=543A = \frac{{54}}{3}\newlineA=18A = 18

More problems from Find equations of tangent lines using limits