Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

1=sqrt(3x+1)-sqrt(2x-1)

1=3x+12x11=\sqrt{3 x+1}-\sqrt{2 x-1}

Full solution

Q. 1=3x+12x11=\sqrt{3 x+1}-\sqrt{2 x-1}
  1. Given Equation: We start with the given equation:\newline1=3x+12x11 = \sqrt{3x+1} - \sqrt{2x-1}\newlineTo solve for xx, we need to isolate the square root terms and then square both sides to eliminate the square roots.
  2. Move and Square: First, we move the 2x1\sqrt{2x-1} to the other side of the equation by adding it to both sides: 1+2x1=3x+11 + \sqrt{2x-1} = \sqrt{3x+1}
  3. Expand and Simplify: Now, we square both sides of the equation to eliminate the square roots: \newline(\(1 + \sqrt{22x1-1})^22 = (\sqrt{33x+11})^22
  4. Combine Like Terms: Expanding the left side, we get: 1+22x1+(2x1)2=3x+11 + 2\sqrt{2x-1} + (\sqrt{2x-1})^2 = 3x+1
  5. Isolate Square Root: Simplify the left side by squaring 2x1\sqrt{2x-1}:1+22x1+2x1=3x+11 + 2\sqrt{2x-1} + 2x-1 = 3x+1
  6. Square Both Sides: Combine like terms on the left side: 2x+22x1=3x+12x + 2\sqrt{2x-1} = 3x+1
  7. Clear Fraction: Subtract 2x2x from both sides to get the square root term by itself:\newline22x1=x+12\sqrt{2x-1} = x+1
  8. Expand and Rearrange: Divide both sides by 22 to isolate the square root: 2x1=x+12\sqrt{2x-1} = \frac{x+1}{2}
  9. Factor Quadratic: Now, square both sides again to eliminate the square root: \sqrt{\(2\)x\(-1\)})^\(2 = \left(\frac{x+11}{22}\right)^22
  10. Check Solutions: Squaring the left side gives us 2x12x-1, and expanding the right side gives us:\newline2x1=x2+2x+142x-1 = \frac{x^2 + 2x + 1}{4}
  11. Check Solutions: Squaring the left side gives us 2x12x-1, and expanding the right side gives us:\newline2x1=x2+2x+142x-1 = \frac{x^2 + 2x + 1}{4} Multiply both sides by 44 to clear the fraction:\newline4(2x1)=x2+2x+14(2x-1) = x^2 + 2x + 1
  12. Check Solutions: Squaring the left side gives us 2x12x-1, and expanding the right side gives us:\newline2x1=x2+2x+142x-1 = \frac{x^2 + 2x + 1}{4} Multiply both sides by 44 to clear the fraction:\newline4(2x1)=x2+2x+14(2x-1) = x^2 + 2x + 1 Expand the left side:\newline8x4=x2+2x+18x - 4 = x^2 + 2x + 1
  13. Check Solutions: Squaring the left side gives us 2x12x-1, and expanding the right side gives us:\newline2x1=x2+2x+142x-1 = \frac{x^2 + 2x + 1}{4} Multiply both sides by 44 to clear the fraction:\newline4(2x1)=x2+2x+14(2x-1) = x^2 + 2x + 1 Expand the left side:\newline8x4=x2+2x+18x - 4 = x^2 + 2x + 1 Rearrange the equation to set it to zero and form a quadratic equation:\newlinex26x+5=0x^2 - 6x + 5 = 0
  14. Check Solutions: Squaring the left side gives us 2x12x-1, and expanding the right side gives us:\newline2x1=x2+2x+142x-1 = \frac{x^2 + 2x + 1}{4} Multiply both sides by 44 to clear the fraction:\newline4(2x1)=x2+2x+14(2x-1) = x^2 + 2x + 1 Expand the left side:\newline8x4=x2+2x+18x - 4 = x^2 + 2x + 1 Rearrange the equation to set it to zero and form a quadratic equation:\newlinex26x+5=0x^2 - 6x + 5 = 0 Factor the quadratic equation:\newline(x5)(x1)=0(x - 5)(x - 1) = 0
  15. Check Solutions: Squaring the left side gives us 2x12x-1, and expanding the right side gives us:\newline2x1=x2+2x+142x-1 = \frac{x^2 + 2x + 1}{4} Multiply both sides by 44 to clear the fraction:\newline4(2x1)=x2+2x+14(2x-1) = x^2 + 2x + 1 Expand the left side:\newline8x4=x2+2x+18x - 4 = x^2 + 2x + 1 Rearrange the equation to set it to zero and form a quadratic equation:\newlinex26x+5=0x^2 - 6x + 5 = 0 Factor the quadratic equation:\newline(x5)(x1)=0(x - 5)(x - 1) = 0 Set each factor equal to zero and solve for xx:\newlinex5=0x - 5 = 0 or x1=0x - 1 = 0
  16. Check Solutions: Squaring the left side gives us 2x12x-1, and expanding the right side gives us:\newline2x1=x2+2x+142x-1 = \frac{x^2 + 2x + 1}{4} Multiply both sides by 44 to clear the fraction:\newline4(2x1)=x2+2x+14(2x-1) = x^2 + 2x + 1 Expand the left side:\newline8x4=x2+2x+18x - 4 = x^2 + 2x + 1 Rearrange the equation to set it to zero and form a quadratic equation:\newlinex26x+5=0x^2 - 6x + 5 = 0 Factor the quadratic equation:\newline(x5)(x1)=0(x - 5)(x - 1) = 0 Set each factor equal to zero and solve for xx:\newlinex5=0x - 5 = 0 or x1=0x - 1 = 0 Solving each equation gives us the possible solutions for xx:\newline2x1=x2+2x+142x-1 = \frac{x^2 + 2x + 1}{4}11 or 2x1=x2+2x+142x-1 = \frac{x^2 + 2x + 1}{4}22
  17. Check Solutions: Squaring the left side gives us 2x12x-1, and expanding the right side gives us:\newline2x1=x2+2x+142x-1 = \frac{x^2 + 2x + 1}{4} Multiply both sides by 44 to clear the fraction:\newline4(2x1)=x2+2x+14(2x-1) = x^2 + 2x + 1 Expand the left side:\newline8x4=x2+2x+18x - 4 = x^2 + 2x + 1 Rearrange the equation to set it to zero and form a quadratic equation:\newlinex26x+5=0x^2 - 6x + 5 = 0 Factor the quadratic equation:\newline(x5)(x1)=0(x - 5)(x - 1) = 0 Set each factor equal to zero and solve for xx:\newlinex5=0x - 5 = 0 or x1=0x - 1 = 0 Solving each equation gives us the possible solutions for xx:\newline2x1=x2+2x+142x-1 = \frac{x^2 + 2x + 1}{4}11 or 2x1=x2+2x+142x-1 = \frac{x^2 + 2x + 1}{4}22 We need to check these solutions in the original equation because squaring both sides can introduce extraneous solutions. Let's check 2x1=x2+2x+142x-1 = \frac{x^2 + 2x + 1}{4}11:\newline2x1=x2+2x+142x-1 = \frac{x^2 + 2x + 1}{4}44\newline2x1=x2+2x+142x-1 = \frac{x^2 + 2x + 1}{4}55\newline2x1=x2+2x+142x-1 = \frac{x^2 + 2x + 1}{4}66\newline2x1=x2+2x+142x-1 = \frac{x^2 + 2x + 1}{4}77\newlineThis solution checks out.
  18. Check Solutions: Squaring the left side gives us 2x12x-1, and expanding the right side gives us:\newline2x1=x2+2x+142x-1 = \frac{x^2 + 2x + 1}{4} Multiply both sides by 44 to clear the fraction:\newline4(2x1)=x2+2x+14(2x-1) = x^2 + 2x + 1 Expand the left side:\newline8x4=x2+2x+18x - 4 = x^2 + 2x + 1 Rearrange the equation to set it to zero and form a quadratic equation:\newlinex26x+5=0x^2 - 6x + 5 = 0 Factor the quadratic equation:\newline(x5)(x1)=0(x - 5)(x - 1) = 0 Set each factor equal to zero and solve for xx:\newlinex5=0x - 5 = 0 or x1=0x - 1 = 0 Solving each equation gives us the possible solutions for xx:\newline2x1=x2+2x+142x-1 = \frac{x^2 + 2x + 1}{4}11 or 2x1=x2+2x+142x-1 = \frac{x^2 + 2x + 1}{4}22 We need to check these solutions in the original equation because squaring both sides can introduce extraneous solutions. Let's check 2x1=x2+2x+142x-1 = \frac{x^2 + 2x + 1}{4}11:\newline2x1=x2+2x+142x-1 = \frac{x^2 + 2x + 1}{4}44\newline2x1=x2+2x+142x-1 = \frac{x^2 + 2x + 1}{4}55\newline2x1=x2+2x+142x-1 = \frac{x^2 + 2x + 1}{4}66\newline2x1=x2+2x+142x-1 = \frac{x^2 + 2x + 1}{4}77\newlineThis solution checks out.Now let's check 2x1=x2+2x+142x-1 = \frac{x^2 + 2x + 1}{4}22:\newline2x1=x2+2x+142x-1 = \frac{x^2 + 2x + 1}{4}99\newline4400\newline4411\newline2x1=x2+2x+142x-1 = \frac{x^2 + 2x + 1}{4}77\newlineThis solution also checks out.

More problems from Domain and range of absolute value functions: equations