Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Algebra 1
Solve a quadratic equation by factoring
Solve for
x
x
x
. Enter the solutions from least to greatest.
\newline
x
2
+
12
x
+
32
=
0
lesser
x
=
□
greater
x
=
□
\begin{array}{l} x^{2}+12 x+32=0 \\ \text { lesser } x=\square \\ \text { greater } x=\square \end{array}
x
2
+
12
x
+
32
=
0
lesser
x
=
□
greater
x
=
□
Get tutor help
Solve for
x
x
x
. Enter the solutions from least to greatest.
\newline
x
2
−
5
x
−
14
=
0
lesser
x
=
□
greater
x
=
□
\begin{array}{l} x^{2}-5 x-14=0 \\ \text { lesser } x=\square \\ \text { greater } x=\square \end{array}
x
2
−
5
x
−
14
=
0
lesser
x
=
□
greater
x
=
□
Get tutor help
Solve for
x
x
x
. Enter the solutions from least to greatest.
\newline
2
x
2
−
2
x
−
180
=
0
lesser
x
=
□
greater
x
=
□
\begin{array}{l} 2 x^{2}-2 x-180=0 \\ \text { lesser } x=\square \\ \text { greater } x=\square \end{array}
2
x
2
−
2
x
−
180
=
0
lesser
x
=
□
greater
x
=
□
Get tutor help
Solve for
x
x
x
.
\newline
5
x
2
+
70
x
+
245
=
0
x
=
□
\begin{array}{l} 5 x^{2}+70 x+245=0 \\ x=\square \end{array}
5
x
2
+
70
x
+
245
=
0
x
=
□
Get tutor help
Solve for
x
x
x
. Enter the solutions from least to greatest.
\newline
6
x
2
−
18
x
−
240
=
0
6 x^{2}-18 x-240=0
6
x
2
−
18
x
−
240
=
0
\newline
lesser
x
=
x=
x
=
\newline
greater
x
=
x=
x
=
Get tutor help
Solve for
x
x
x
.
\newline
6
x
2
+
60
x
+
150
=
0
x
=
□
\begin{array}{l} 6 x^{2}+60 x+150=0 \\ x=\square \end{array}
6
x
2
+
60
x
+
150
=
0
x
=
□
Get tutor help
Find one value of
x
x
x
that is a solution to the equation:
\newline
(
2
x
+
3
)
2
−
6
x
−
9
=
0
(2 x+3)^{2}-6 x-9=0
(
2
x
+
3
)
2
−
6
x
−
9
=
0
\newline
x
=
x=
x
=
Get tutor help
Solve for
x
x
x
. Enter the solutions from least to greatest.
\newline
6
x
2
−
30
x
−
84
=
0
6 x^{2}-30 x-84=0
6
x
2
−
30
x
−
84
=
0
\newline
lesser
x
=
x=
x
=
\newline
greater
x
=
x=
x
=
Get tutor help
Solve for
x
x
x
.
\newline
x
2
+
12
x
+
36
=
0
x
=
□
\begin{array}{l} x^{2}+12 x+36=0 \\ x=\square \end{array}
x
2
+
12
x
+
36
=
0
x
=
□
Get tutor help
Solve for
x
x
x
.
\newline
3
x
2
−
54
x
+
243
=
0
x
=
\begin{array}{l} 3 x^{2}-54 x+243=0 \\ x= \end{array}
3
x
2
−
54
x
+
243
=
0
x
=
Get tutor help
Solve for
x
x
x
.
\newline
x
2
+
6
x
+
9
=
0
x
=
□
\begin{array}{l} x^{2}+6 x+9=0 \\ x=\square \end{array}
x
2
+
6
x
+
9
=
0
x
=
□
Get tutor help
Solve for
x
x
x
. Enter the solutions from least to greatest.
\newline
x
2
−
12
x
+
27
=
0
lesser
x
=
□
greater
x
=
□
\begin{array}{l} x^{2}-12 x+27=0 \\ \text { lesser } x=\square \\ \text { greater } x=\square \end{array}
x
2
−
12
x
+
27
=
0
lesser
x
=
□
greater
x
=
□
Get tutor help
Solve for
x
x
x
. Enter the solutions from least to greatest.
\newline
3
x
2
−
33
x
+
54
=
0
3 x^{2}-33 x+54=0
3
x
2
−
33
x
+
54
=
0
\newline
lesser
x
=
x=
x
=
\newline
greater
x
=
x=
x
=
Get tutor help
Solve for
x
x
x
. Enter the solutions from least to greatest.
\newline
x
2
−
8
x
+
7
=
0
lesser
x
=
□
greater
x
=
□
\begin{array}{l} x^{2}-8 x+7=0 \\ \text { lesser } x=\square \\ \text { greater } x=\square \end{array}
x
2
−
8
x
+
7
=
0
lesser
x
=
□
greater
x
=
□
Get tutor help
Solve for
x
x
x
. Enter the solutions from least to greatest.
\newline
x
2
−
14
x
+
40
=
0
lesser
x
=
□
greater
x
=
□
\begin{array}{l} x^{2}-14 x+40=0 \\ \text { lesser } x=\square \\ \text { greater } x=\square \end{array}
x
2
−
14
x
+
40
=
0
lesser
x
=
□
greater
x
=
□
Get tutor help
Solve for
x
x
x
.
\newline
2
x
2
−
28
x
+
98
=
0
x
=
□
\begin{array}{l} 2 x^{2}-28 x+98=0 \\ x=\square \end{array}
2
x
2
−
28
x
+
98
=
0
x
=
□
Get tutor help
Solve for
x
x
x
.
\newline
x
2
+
14
x
+
49
=
0
x
=
□
\begin{array}{l} x^{2}+14 x+49=0 \\ x=\square \end{array}
x
2
+
14
x
+
49
=
0
x
=
□
Get tutor help
Find one value of
x
x
x
that is a solution to the equation:
\newline
(
4
x
+
1
)
2
+
9
(
4
x
+
1
)
=
−
18
x
=
□
\begin{array}{l} (4 x+1)^{2}+9(4 x+1)=-18 \\ x=\square \end{array}
(
4
x
+
1
)
2
+
9
(
4
x
+
1
)
=
−
18
x
=
□
Get tutor help
Solve for
x
x
x
. Enter the solutions from least to greatest.
\newline
5
x
2
+
15
x
−
140
=
0
5 x^{2}+15 x-140=0
5
x
2
+
15
x
−
140
=
0
\newline
lesser
x
=
x=
x
=
\newline
greater
x
=
x=
x
=
Get tutor help
Solve for
x
x
x
.
\newline
x
2
+
16
x
+
64
=
0
x
=
□
\begin{array}{l} x^{2}+16 x+64=0 \\ x=\square \end{array}
x
2
+
16
x
+
64
=
0
x
=
□
Get tutor help
Solve for
x
x
x
.
\newline
x
2
−
20
x
+
100
=
0
x^{2}-20 x+100=0
x
2
−
20
x
+
100
=
0
\newline
x
=
x=
x
=
Get tutor help
Find one value of
x
x
x
that is a solution to the equation:
\newline
(
x
2
+
3
)
2
=
4
x
2
+
12
x
=
□
\begin{array}{l} \left(x^{2}+3\right)^{2}=4 x^{2}+12 \\ x=\square \end{array}
(
x
2
+
3
)
2
=
4
x
2
+
12
x
=
□
Get tutor help
Solve for
x
x
x
.
\newline
4
x
2
−
48
x
+
144
=
0
x
=
□
\begin{array}{l} 4 x^{2}-48 x+144=0 \\ x=\square \end{array}
4
x
2
−
48
x
+
144
=
0
x
=
□
Get tutor help
Find one value of
x
x
x
that is a solution to the equation:
\newline
(
4
x
−
1
)
2
=
20
x
−
5
(4 x-1)^{2}=20 x-5
(
4
x
−
1
)
2
=
20
x
−
5
\newline
x
=
x=
x
=
Get tutor help
Find one value of
x
x
x
that is a solution to the equation:
\newline
(
x
−
2
)
2
−
6
(
x
−
2
)
+
5
=
0
x
=
□
\begin{array}{l} (x-2)^{2}-6(x-2)+5=0 \\ x=\square \end{array}
(
x
−
2
)
2
−
6
(
x
−
2
)
+
5
=
0
x
=
□
Get tutor help
Solve for
x
x
x
. Enter the solutions from least to greatest.
\newline
x
2
+
16
x
+
63
=
0
lesser
x
=
□
greater
x
=
□
\begin{array}{l} x^{2}+16 x+63=0 \\ \text { lesser } x=\square \\ \text { greater } x=\square \end{array}
x
2
+
16
x
+
63
=
0
lesser
x
=
□
greater
x
=
□
Get tutor help
Find one value of
x
x
x
that is a solution to the equation:
\newline
(
x
2
+
1
)
2
−
5
x
2
−
5
=
0
x
=
□
\begin{array}{l} \left(x^{2}+1\right)^{2}-5 x^{2}-5=0 \\ x=\square \end{array}
(
x
2
+
1
)
2
−
5
x
2
−
5
=
0
x
=
□
Get tutor help
Solve for
x
x
x
.
\newline
6
x
2
+
36
x
+
54
=
0
x
=
□
\begin{array}{l} 6 x^{2}+36 x+54=0 \\ x=\square \end{array}
6
x
2
+
36
x
+
54
=
0
x
=
□
Get tutor help
Find one value of
x
x
x
that is a solution to the equation:
\newline
(
x
2
+
3
)
2
+
21
=
10
x
2
+
30
x
=
□
\begin{array}{l} \left(x^{2}+3\right)^{2}+21=10 x^{2}+30 \\ x=\square \end{array}
(
x
2
+
3
)
2
+
21
=
10
x
2
+
30
x
=
□
Get tutor help
Solve for
x
x
x
. Enter the solutions from least to greatest.
\newline
x
2
+
x
−
30
=
0
lesser
x
=
□
greater
x
=
□
\begin{array}{l} x^{2}+x-30=0 \\ \text { lesser } x=\square \\ \text { greater } x=\square \end{array}
x
2
+
x
−
30
=
0
lesser
x
=
□
greater
x
=
□
Get tutor help
Solve for
x
x
x
. Enter the solutions from least to greatest.
\newline
4
x
2
+
72
x
+
320
=
0
lesser
x
=
□
greater
x
=
□
\begin{array}{l} 4 x^{2}+72 x+320=0 \\ \text { lesser } x=\square \\ \text { greater } x=\square \end{array}
4
x
2
+
72
x
+
320
=
0
lesser
x
=
□
greater
x
=
□
Get tutor help
Find one value of
x
x
x
that is a solution to the equation:
\newline
(
2
x
−
3
)
2
=
4
x
−
6
(2 x-3)^{2}=4 x-6
(
2
x
−
3
)
2
=
4
x
−
6
\newline
x
=
x=
x
=
Get tutor help
Solve for
x
x
x
. Enter the solutions from least to greatest.
\newline
x
2
+
x
−
42
=
0
lesser
x
=
□
greater
x
=
□
\begin{array}{l} x^{2}+x-42=0 \\ \text { lesser } x=\square \\ \text { greater } x=\square \end{array}
x
2
+
x
−
42
=
0
lesser
x
=
□
greater
x
=
□
Get tutor help
Find one value of
x
x
x
that is a solution to the equation:
\newline
(
3
x
−
2
)
2
−
4
=
9
x
−
6
(3 x-2)^{2}-4=9 x-6
(
3
x
−
2
)
2
−
4
=
9
x
−
6
\newline
x
=
x=
x
=
Get tutor help
Solve for
x
x
x
.
\newline
2
x
2
−
40
x
+
200
=
0
x
=
□
\begin{array}{l} 2 x^{2}-40 x+200=0 \\ x=\square \end{array}
2
x
2
−
40
x
+
200
=
0
x
=
□
Get tutor help
Solve for
x
x
x
. Enter the solutions from least to greatest.
\newline
5
x
2
+
45
x
+
90
=
0
lesser
x
=
□
greater
x
=
□
\begin{array}{l} 5 x^{2}+45 x+90=0 \\ \text { lesser } x=\square \\ \text { greater } x=\square \end{array}
5
x
2
+
45
x
+
90
=
0
lesser
x
=
□
greater
x
=
□
Get tutor help
Solve for
x
x
x
.
\newline
2
x
2
−
12
x
+
18
=
0
x
=
□
\begin{array}{l} 2 x^{2}-12 x+18=0 \\ x=\square \end{array}
2
x
2
−
12
x
+
18
=
0
x
=
□
Get tutor help
Find one value of
x
x
x
that is a solution to the equation:
\newline
(
7
x
+
2
)
2
+
6
(
7
x
+
2
)
=
27
x
=
□
\begin{array}{l} (7 x+2)^{2}+6(7 x+2)=27 \\ x=\square \end{array}
(
7
x
+
2
)
2
+
6
(
7
x
+
2
)
=
27
x
=
□
Get tutor help
Solve for
x
x
x
. Enter the solutions from least to greatest.
\newline
x
2
+
12
x
+
27
=
0
lesser
x
=
□
greater
x
=
□
\begin{array}{l} x^{2}+12 x+27=0 \\ \text { lesser } x=\square \\ \text { greater } x=\square \end{array}
x
2
+
12
x
+
27
=
0
lesser
x
=
□
greater
x
=
□
Get tutor help
Solve for
x
x
x
.
\newline
x
2
−
14
x
+
49
=
0
x
=
□
\begin{array}{l} x^{2}-14 x+49=0 \\ x=\square \end{array}
x
2
−
14
x
+
49
=
0
x
=
□
Get tutor help
Solve for
x
x
x
. Enter the solutions from least to greatest.
\newline
x
2
−
2
x
−
35
=
0
lesser
x
=
□
greater
x
=
□
\begin{array}{l} x^{2}-2 x-35=0 \\ \text { lesser } x=\square \\ \text { greater } x=\square \end{array}
x
2
−
2
x
−
35
=
0
lesser
x
=
□
greater
x
=
□
Get tutor help
Solve for
x
x
x
. Enter the solutions from least to greatest.
\newline
6
x
2
−
12
x
−
210
=
0
6 x^{2}-12 x-210=0
6
x
2
−
12
x
−
210
=
0
\newline
lesser
x
=
x=
x
=
\newline
greater
x
=
x=
x
=
Get tutor help
Solve for
x
x
x
. Enter the solutions from least to greatest.
\newline
x
2
−
11
x
+
18
=
0
lesser
x
=
□
greater
x
=
□
\begin{array}{l} x^{2}-11 x+18=0 \\ \text { lesser } x=\square \\ \text { greater } x=\square \end{array}
x
2
−
11
x
+
18
=
0
lesser
x
=
□
greater
x
=
□
Get tutor help
Solve for
x
x
x
.
\newline
x
2
−
18
x
+
81
=
0
x
=
□
\begin{array}{l} x^{2}-18 x+81=0 \\ x=\square \end{array}
x
2
−
18
x
+
81
=
0
x
=
□
Get tutor help
Solve for
x
x
x
. Enter the solutions from least to greatest.
\newline
3
x
2
−
9
x
−
12
=
0
lesser
x
=
□
greater
x
=
□
\begin{array}{l} 3 x^{2}-9 x-12=0 \\ \text { lesser } x=\square \\ \text { greater } x=\square \end{array}
3
x
2
−
9
x
−
12
=
0
lesser
x
=
□
greater
x
=
□
Get tutor help
Solve for
x
x
x
. Enter the solutions from least to greatest.
\newline
x
2
−
x
−
90
=
0
lesser
x
=
□
greater
x
=
□
\begin{array}{l} x^{2}-x-90=0 \\ \text { lesser } x=\square \\ \text { greater } x=\square \end{array}
x
2
−
x
−
90
=
0
lesser
x
=
□
greater
x
=
□
Get tutor help
Find one value of
x
x
x
that is a solution to the equation:
\newline
(
x
2
−
6
)
2
=
−
3
x
2
+
18
x
=
□
\begin{array}{l} \left(x^{2}-6\right)^{2}=-3 x^{2}+18 \\ x=\square \end{array}
(
x
2
−
6
)
2
=
−
3
x
2
+
18
x
=
□
Get tutor help
Find one value of
x
x
x
that is a solution to the equation:
\newline
(
3
x
−
1
)
2
+
12
x
−
4
=
0
(3 x-1)^{2}+12 x-4=0
(
3
x
−
1
)
2
+
12
x
−
4
=
0
\newline
x
=
x=
x
=
Get tutor help
Solve for
x
x
x
.
\newline
x
2
+
10
x
+
25
=
0
x
=
□
\begin{array}{l} x^{2}+10 x+25=0 \\ x=\square \end{array}
x
2
+
10
x
+
25
=
0
x
=
□
Get tutor help
Solve for
x
x
x
. Enter the solutions from least to greatest.
\newline
6
x
2
−
6
x
−
72
=
0
6 x^{2}-6 x-72=0
6
x
2
−
6
x
−
72
=
0
\newline
lesser
x
=
x=
x
=
\newline
greater
x
=
x=
x
=
Get tutor help
Previous
1
2
3
Next