Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find one value of 
x that is a solution to the equation:

{:[(3x-2)^(2)-4=9x-6],[x=◻]:}

Find one value of x x that is a solution to the equation:\newline(3x2)24=9x6 (3 x-2)^{2}-4=9 x-6 \newlinex= x=

Full solution

Q. Find one value of x x that is a solution to the equation:\newline(3x2)24=9x6 (3 x-2)^{2}-4=9 x-6 \newlinex= x=
  1. Write and simplify equation: Write down the given equation and simplify it if possible.\newline(3x2)24=9x6(3x-2)^2 - 4 = 9x - 6
  2. Expand squared term: Expand the squared term (3x2)2(3x-2)^2.\newline(3x2)(3x2)4=9x26x6x+44=9x212x(3x-2)(3x-2) - 4 = 9x^2 - 6x - 6x + 4 - 4 = 9x^2 - 12x\newline9x212x=9x69x^2 - 12x = 9x - 6
  3. Move terms to one side: Move all terms to one side to set the equation to zero.\newline9x212x9x+6=09x^2 - 12x - 9x + 6 = 0\newline9x221x+6=09x^2 - 21x + 6 = 0
  4. Factor or use quadratic formula: Factor the quadratic equation if possible.\newlineLooking for two numbers that multiply to 9×6=549 \times 6 = 54 and add up to 21-21 is difficult, and it seems that the quadratic does not factor nicely. We will use the quadratic formula instead.\newlinex=b±b24ac2ax = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}}\newlineHere, a=9a = 9, b=21b = -21, and c=6c = 6.
  5. Apply quadratic formula: Apply the quadratic formula.\newlinex=(21)±(21)249629x = \frac{{-(-21) \pm \sqrt{{(-21)^2 - 4 \cdot 9 \cdot 6}}}}{{2 \cdot 9}}\newlinex=21±44121618x = \frac{{21 \pm \sqrt{{441 - 216}}}}{18}\newlinex=21±22518x = \frac{{21 \pm \sqrt{{225}}}}{18}
  6. Simplify and solve for x: Simplify under the square root and solve for x.\newlinex=21±1518x = \frac{{21 \pm 15}}{{18}}\newlineWe have two possible solutions:\newlinex=(21+15)18x = \frac{{(21 + 15)}}{{18}}\newlinex=3618x = \frac{{36}}{{18}}\newlinex=2x = 2\newlineor\newlinex=(2115)18x = \frac{{(21 - 15)}}{{18}}\newlinex=618x = \frac{{6}}{{18}}\newlinex=13x = \frac{1}{3}
  7. Check solutions in original equation: Check both solutions in the original equation.\newlineFor x=2x = 2:\newline(3(2)2)24=9(2)6(3(2)-2)^2 - 4 = 9(2) - 6\newline(62)24=186(6-2)^2 - 4 = 18 - 6\newline424=124^2 - 4 = 12\newline164=1216 - 4 = 12\newline12=1212 = 12
  8. Discard incorrect solution: Since the solution x=13x = \frac{1}{3} does not satisfy the original equation, we discard it. The solution x=2x = 2 is the correct value that satisfies the equation.

More problems from Solve a quadratic equation by factoring