Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Algebra 1
Solve a quadratic equation by factoring
Solve for
d
d
d
.
\newline
−
2
−
5
d
20
+
3
d
2
=
12
5
-2 - \frac{5d}{20} + \frac{3d}{2} = \frac{12}{5}
−
2
−
20
5
d
+
2
3
d
=
5
12
\newline
Write your answer as a decimal, whole number, or fraction in lowest terms.
\newline
d = ____
Get tutor help
Solve for
n
n
n
.
\newline
n
2
−
12
n
+
11
=
0
n^2 - 12n + 11 = 0
n
2
−
12
n
+
11
=
0
\newline
Write each solution as an integer, proper fraction, or improper fraction in simplest form. If there are multiple solutions, separate them with commas.
\newline
n
=
n =
n
=
____
Get tutor help
Solve for
w
w
w
.
\newline
w
2
−
19
w
−
20
=
0
w^2 - 19w - 20 = 0
w
2
−
19
w
−
20
=
0
\newline
Write each solution as an integer, proper fraction, or improper fraction in simplest form. If there are multiple solutions, separate them with commas.
\newline
w
=
_
_
w = \_\_
w
=
__
Get tutor help
Solve for
j
j
j
.
\newline
j
2
−
22
j
+
21
=
0
j^2 - 22j + 21 = 0
j
2
−
22
j
+
21
=
0
\newline
Write each solution as an integer, proper fraction, or improper fraction in simplest form. If there are multiple solutions, separate them with commas.
\newline
j
=
j =
j
=
____
Get tutor help
Solve for
q
q
q
.
\newline
q
2
+
9
q
+
18
=
0
q^2 + 9q + 18 = 0
q
2
+
9
q
+
18
=
0
\newline
Write each solution as an integer, proper fraction, or improper fraction in simplest form. If there are multiple solutions, separate them with commas.
\newline
q = ____
Get tutor help
Solve for
u
u
u
.
\newline
u
2
−
17
u
−
18
=
0
u^2 - 17u - 18 = 0
u
2
−
17
u
−
18
=
0
\newline
Write each solution as an integer, proper fraction, or improper fraction in simplest form. If there are multiple solutions, separate them with commas.
\newline
u
=
_
_
u = \_\_
u
=
__
Get tutor help
Solve for
d
d
d
.
\newline
d
2
+
24
d
−
25
=
0
d^2 + 24d - 25 = 0
d
2
+
24
d
−
25
=
0
\newline
Write each solution as an integer, proper fraction, or improper fraction in simplest form. If there are multiple solutions, separate them with commas.
\newline
d = ____
Get tutor help
Solve for
n
n
n
.
\newline
n
2
−
9
n
+
14
=
0
n^2 - 9n + 14 = 0
n
2
−
9
n
+
14
=
0
\newline
Write each solution as an integer, proper fraction, or improper fraction in simplest form. If there are multiple solutions, separate them with commas.
\newline
n
=
n =
n
=
____
Get tutor help
Solve for
q
q
q
.
\newline
q
2
−
6
q
−
7
=
0
q^2 - 6q - 7 = 0
q
2
−
6
q
−
7
=
0
\newline
Write each solution as an integer, proper fraction, or improper fraction in simplest form. If there are multiple solutions, separate them with commas.
\newline
q = ____
Get tutor help
Solve for
k
k
k
.
\newline
k
2
+
4
k
+
4
=
0
k^2 + 4k + 4 = 0
k
2
+
4
k
+
4
=
0
\newline
Write each solution as an integer, proper fraction, or improper fraction in simplest form. If there are multiple solutions, separate them with commas.
\newline
k
=
k =
k
=
____
Get tutor help
Solve for
k
k
k
.
\newline
k
2
−
32
k
=
0
k^2 - 32k = 0
k
2
−
32
k
=
0
\newline
Write each solution as an integer, proper fraction, or improper fraction in simplest form. If there are multiple solutions, separate them with commas.
\newline
k = ____
Get tutor help
Solve for
u
u
u
.
\newline
u
2
+
3
u
=
0
u^2 + 3u = 0
u
2
+
3
u
=
0
\newline
Write each solution as an integer, proper fraction, or improper fraction in simplest form. If there are multiple solutions, separate them with commas.
\newline
u
=
_
_
_
u = \_\_\_
u
=
___
Get tutor help
Solve for
j
j
j
.
\newline
j
2
+
21
j
=
0
j^2 + 21j = 0
j
2
+
21
j
=
0
\newline
Write each solution as an integer, proper fraction, or improper fraction in simplest form. If there are multiple solutions, separate them with commas.
\newline
j
=
j =
j
=
____
Get tutor help
Solve for
v
v
v
.
\newline
v
2
+
8
v
+
7
=
0
v^2 + 8v + 7 = 0
v
2
+
8
v
+
7
=
0
\newline
Write each solution as an integer, proper fraction, or improper fraction in simplest form. If there are multiple solutions, separate them with commas.
\newline
v
=
v =
v
=
____
Get tutor help
Solve for
u
u
u
.
\newline
u
2
+
8
u
+
16
=
0
u^2 + 8u + 16 = 0
u
2
+
8
u
+
16
=
0
\newline
Write each solution as an integer, proper fraction, or improper fraction in simplest form. If there are multiple solutions, separate them with commas.
\newline
u
=
_
_
u = \_\_
u
=
__
Get tutor help
Solve for
w
w
w
.
\newline
w
2
+
6
w
+
5
=
0
w^2 + 6w + 5 = 0
w
2
+
6
w
+
5
=
0
\newline
Write each solution as an integer, proper fraction, or improper fraction in simplest form. If there are multiple solutions, separate them with commas.
\newline
w
=
_
_
_
w = \_\_\_
w
=
___
Get tutor help
Solve for
q
q
q
.
\newline
q
2
+
13
q
−
14
=
0
q^2 + 13q - 14 = 0
q
2
+
13
q
−
14
=
0
\newline
Write each solution as an integer, proper fraction, or improper fraction in simplest form. If there are multiple solutions, separate them with commas.
\newline
q = ____
Get tutor help
Solve for
h
h
h
.
\newline
h
2
−
11
h
+
18
=
0
h^2 - 11h + 18 = 0
h
2
−
11
h
+
18
=
0
\newline
Write each solution as an integer, proper fraction, or improper fraction in simplest form. If there are multiple solutions, separate them with commas.
\newline
h = ____
Get tutor help
Solve for
n
n
n
.
\newline
n
2
−
8
n
=
0
n^2 - 8n = 0
n
2
−
8
n
=
0
\newline
Write each solution as an integer, proper fraction, or improper fraction in simplest form. If there are multiple solutions, separate them with commas.
\newline
n = ____
Get tutor help
Solve for
d
d
d
.
\newline
d
2
−
10
d
−
24
=
0
d^2 - 10d - 24 = 0
d
2
−
10
d
−
24
=
0
\newline
Write each solution as an integer, proper fraction, or improper fraction in simplest form. If there are multiple solutions, separate them with commas.
\newline
d
=
d =
d
=
____
Get tutor help
Solve for
t
t
t
.
\newline
t
2
−
15
t
=
0
t^2 - 15t = 0
t
2
−
15
t
=
0
\newline
Write each solution as an integer, proper fraction, or improper fraction in simplest form. If there are multiple solutions, separate them with commas.
\newline
t = ____
Get tutor help
Solve for
q
q
q
.
\newline
q
2
+
10
q
+
16
=
0
q^2 + 10q + 16 = 0
q
2
+
10
q
+
16
=
0
\newline
Write each solution as an integer, proper fraction, or improper fraction in simplest form. If there are multiple solutions, separate them with commas.
\newline
q
=
q =
q
=
____
Get tutor help
Solve for
d
d
d
.
\newline
d
2
+
7
d
+
12
=
0
d^2 + 7d + 12 = 0
d
2
+
7
d
+
12
=
0
\newline
Write each solution as an integer, proper fraction, or improper fraction in simplest form. If there are multiple solutions, separate them with commas.
\newline
d
=
d =
d
=
____
Get tutor help
Solve for
m
m
m
.
\newline
m
2
+
20
m
+
19
=
0
m^2 + 20m + 19 = 0
m
2
+
20
m
+
19
=
0
\newline
Write each solution as an integer, proper fraction, or improper fraction in simplest form. If there are multiple solutions, separate them with commas.
\newline
m
=
m =
m
=
____
Get tutor help
Solve for
t
t
t
.
\newline
t
2
+
2
t
−
8
=
0
t^2 + 2t - 8 = 0
t
2
+
2
t
−
8
=
0
\newline
Write each solution as an integer, proper fraction, or improper fraction in simplest form. If there are multiple solutions, separate them with commas.
\newline
t
=
t =
t
=
____
Get tutor help
Solve for
p
p
p
.
\newline
p
2
−
6
p
=
0
p^2 - 6p = 0
p
2
−
6
p
=
0
\newline
Write each solution as an integer, proper fraction, or improper fraction in simplest form. If there are multiple solutions, separate them with commas.
\newline
p = ____
Get tutor help
Solve for
n
n
n
.
\newline
n
2
+
13
n
+
22
=
0
n^2 + 13n + 22 = 0
n
2
+
13
n
+
22
=
0
\newline
Write each solution as an integer, proper fraction, or improper fraction in simplest form.
\newline
If there are multiple solutions, separate them with commas.
\newline
n
=
n =
n
=
____
Get tutor help
Solve for
j
j
j
.
\newline
j
2
+
8
j
+
15
=
0
j^2 + 8j + 15 = 0
j
2
+
8
j
+
15
=
0
\newline
Write each solution as an integer, proper fraction, or improper fraction in simplest form. If there are multiple solutions, separate them with commas.
\newline
j
=
j =
j
=
____
Get tutor help
Solve for
g
g
g
.
\newline
g
2
+
14
g
+
24
=
0
g^2 + 14g + 24 = 0
g
2
+
14
g
+
24
=
0
\newline
Write each solution as an integer, proper fraction, or improper fraction in simplest form. If there are multiple solutions, separate them with commas.
\newline
g
=
g =
g
=
____
Get tutor help
Solve for
f
f
f
.
\newline
f
2
+
12
f
−
13
=
0
f^2 + 12f - 13 = 0
f
2
+
12
f
−
13
=
0
\newline
Write each solution as an integer, proper fraction, or improper fraction in simplest form. If there are multiple solutions, separate them with commas.
\newline
f
=
f =
f
=
____
Get tutor help
Solve for
h
h
h
.
\newline
h
2
+
18
h
+
17
=
0
h^2 + 18h + 17 = 0
h
2
+
18
h
+
17
=
0
\newline
Write each solution as an integer, proper fraction, or improper fraction in simplest form. If there are multiple solutions, separate them with commas.
\newline
h
=
h =
h
=
____
Get tutor help
Solve for
v
v
v
.
v
2
+
8
v
+
12
=
0
v^2+8v+12= 0
v
2
+
8
v
+
12
=
0
Write each solution as an integer, proper fraction, or improper fraction in simplest form. If there are multiple solutions, separate them with commas.
v
=
_
_
_
_
_
v= \,\_\_\_\_\_
v
=
_____
Get tutor help
Solve for
v
v
v
.
\newline
v
2
+
8
v
+
12
=
0
v^2+8v+12= 0
v
2
+
8
v
+
12
=
0
\newline
Write each solution as an integer, proper fraction, or improper fraction in simplest form. If there are multiple solutions, separate them with commas.
\newline
v
=
v=
v
=
_____
Get tutor help
Solve for
x
x
x
.
\newline
−
15
x
+
60
≤
105
-15 x+60 \leq 105 \quad
−
15
x
+
60
≤
105
AND
14
x
+
11
≤
−
31
\quad 14 x+11 \leq-31
14
x
+
11
≤
−
31
\newline
Choose
1
1
1
answer:
\newline
(A)
x
≤
−
3
x \leq-3
x
≤
−
3
\newline
(B)
x
≥
−
3
x \geq-3
x
≥
−
3
\newline
(C)
x
=
−
3
x=-3
x
=
−
3
\newline
(D) There are no solutions
\newline
(E) All values of
x
x
x
are solutions
Get tutor help
Solve for
x
x
x
.
\newline
12
x
−
39
≤
9
12 x-39 \leq 9 \quad
12
x
−
39
≤
9
AND
−
4
x
+
3
<
−
6
\quad-4 x+3<-6
−
4
x
+
3
<
−
6
\newline
Choose
1
1
1
answer:
\newline
(A)
x
≥
4
x \geq 4
x
≥
4
\newline
(B)
9
4
<
x
≤
4
\frac{9}{4}<x \leq 4
4
9
<
x
≤
4
\newline
(C)
x
>
−
9
4
x>-\frac{9}{4}
x
>
−
4
9
\newline
(D) There are no solutions
\newline
(E) All values of
x
x
x
are solutions
Get tutor help
Solve for
x
x
x
.
\newline
3
x
−
91
>
−
87
3 x-91>-87 \quad
3
x
−
91
>
−
87
AND
17
x
−
16
>
18
\quad 17 x-16>18
17
x
−
16
>
18
\newline
Choose
1
1
1
answer:
\newline
(A)
x
>
2
x>2
x
>
2
\newline
(B)
x
>
4
3
x>\frac{4}{3}
x
>
3
4
\newline
(C)
4
3
<
x
<
2
\frac{4}{3}<x<2
3
4
<
x
<
2
\newline
D There are no solutions
\newline
(E) All values of
x
x
x
are solutions
Get tutor help
Solve for
x
x
x
.
\newline
3
x
−
91
>
−
87
3 x-91>-87 \quad
3
x
−
91
>
−
87
OR
21
x
−
17
>
25
\quad 21 x-17>25
21
x
−
17
>
25
\newline
Choose
1
1
1
answer:
\newline
(A)
x
>
2
x>2
x
>
2
\newline
(B)
x
>
4
3
x>\frac{4}{3}
x
>
3
4
\newline
(C)
4
3
<
x
<
2
\frac{4}{3}<x<2
3
4
<
x
<
2
\newline
D There are no solutions
\newline
(E) All values of
x
x
x
are solutions
Get tutor help
Solve for
x
x
x
.
\newline
4
x
−
39
>
−
43
4 x-39>-43 \quad
4
x
−
39
>
−
43
AND
8
x
+
31
<
23
\quad 8 x+31<23
8
x
+
31
<
23
\newline
Choose
1
1
1
answer:
\newline
(A)
x
<
−
1
x<-1
x
<
−
1
or
x
>
−
1
x>-1
x
>
−
1
\newline
(B)
x
<
−
1
x<-1
x
<
−
1
\newline
(C)
x
>
−
1
x>-1
x
>
−
1
\newline
(D) There are no solutions
\newline
(E) All values of
x
x
x
are solutions
Get tutor help
Solve for
x
x
x
.
\newline
−
7
x
−
50
≤
−
1
-7 x-50 \leq-1 \quad
−
7
x
−
50
≤
−
1
AND
−
6
x
+
70
>
−
2
\quad-6 x+70>-2
−
6
x
+
70
>
−
2
\newline
Choose
1
1
1
answer:
\newline
(A)
x
≥
−
7
x \geq-7
x
≥
−
7
\newline
(B)
−
7
≤
x
<
12
-7 \leq x<12
−
7
≤
x
<
12
\newline
(C)
x
<
12
x<12
x
<
12
\newline
(D) There are no solutions
\newline
(E) All values of
x
x
x
are solutions
Get tutor help
Solve for
x
x
x
.
\newline
7
x
+
39
≥
53
7 x+39 \geq 53 \quad
7
x
+
39
≥
53
AND
16
x
+
15
>
31
\quad 16 x+15>31
16
x
+
15
>
31
\newline
Choose
1
1
1
answer:
\newline
(A)
x
>
1
x>1
x
>
1
\newline
(B)
x
≥
2
x \geq 2
x
≥
2
\newline
(C)
x
≤
2
x \leq 2
x
≤
2
\newline
D There are no solutions
\newline
(E) All values of
x
x
x
are solutions
Get tutor help
x
2
−
10
x
+
21
=
0
x^{2}-10 x+21=0
x
2
−
10
x
+
21
=
0
\newline
Let
x
=
h
x=h
x
=
h
and
x
=
m
x=m
x
=
m
be solutions to the given equation, with
h
>
m
h>m
h
>
m
. What is the value of
h
−
m
h-m
h
−
m
?
Get tutor help
Solve for
x
x
x
. Enter the solutions from least to greatest.
\newline
x
2
+
18
x
+
80
=
0
lesser
x
=
□
greater
x
=
□
\begin{array}{l} x^{2}+18 x+80=0 \\ \text { lesser } x=\square \\ \text { greater } x=\square \end{array}
x
2
+
18
x
+
80
=
0
lesser
x
=
□
greater
x
=
□
Get tutor help
Solve for
x
x
x
. Enter the solutions from least to greatest.
\newline
4
x
2
+
48
x
+
128
=
0
4 x^{2}+48 x+128=0
4
x
2
+
48
x
+
128
=
0
\newline
lesser
x
=
x=
x
=
\newline
greater
x
=
x=
x
=
Get tutor help
Solve for
x
x
x
. Enter the solutions from least to greatest.
\newline
x
2
+
3
x
−
28
=
0
lesser
x
=
□
greater
x
=
□
\begin{array}{l} x^{2}+3 x-28=0 \\ \text { lesser } x=\square \\ \text { greater } x=\square \end{array}
x
2
+
3
x
−
28
=
0
lesser
x
=
□
greater
x
=
□
Get tutor help
Solve for
x
x
x
. Enter the solutions from least to greatest.
\newline
x
2
+
12
x
+
32
=
0
lesser
x
=
□
greater
x
=
□
\begin{array}{l} x^{2}+12 x+32=0 \\ \text { lesser } x=\square \\ \text { greater } x=\square \end{array}
x
2
+
12
x
+
32
=
0
lesser
x
=
□
greater
x
=
□
Get tutor help
Solve for
x
x
x
. Enter the solutions from least to greatest.
\newline
x
2
+
9
x
+
18
=
0
lesser
x
=
□
greater
x
=
□
\begin{array}{l} x^{2}+9 x+18=0 \\ \text { lesser } x=\square \\ \text { greater } x=\square \end{array}
x
2
+
9
x
+
18
=
0
lesser
x
=
□
greater
x
=
□
Get tutor help
Solve for
x
x
x
. Enter the solutions from least to greatest.
\newline
5
x
2
+
15
x
−
50
=
0
lesser
x
=
□
greater
x
=
□
\begin{array}{l} 5 x^{2}+15 x-50=0 \\ \text { lesser } x=\square \\ \text { greater } x=\square \end{array}
5
x
2
+
15
x
−
50
=
0
lesser
x
=
□
greater
x
=
□
Get tutor help
Solve for
x
x
x
. Enter the solutions from least to greatest.
\newline
3
x
2
+
3
x
−
90
=
0
lesser
x
=
□
greater
x
=
□
\begin{array}{l} 3 x^{2}+3 x-90=0 \\ \text { lesser } x=\square \\ \text { greater } x=\square \end{array}
3
x
2
+
3
x
−
90
=
0
lesser
x
=
□
greater
x
=
□
Get tutor help
Solve for
x
x
x
. Enter the solutions from least to greatest.
\newline
x
2
+
3
x
−
10
=
0
lesser
x
=
□
greater
x
=
□
\begin{array}{l} x^{2}+3 x-10=0 \\ \text { lesser } x=\square \\ \text { greater } x=\square \end{array}
x
2
+
3
x
−
10
=
0
lesser
x
=
□
greater
x
=
□
Get tutor help
Solve for
x
x
x
. Enter the solutions from least to greatest.
\newline
x
2
+
3
x
−
4
=
0
lesser
x
=
□
greater
x
=
□
\begin{array}{l} x^{2}+3 x-4=0 \\ \text { lesser } x=\square \\ \text { greater } x=\square \end{array}
x
2
+
3
x
−
4
=
0
lesser
x
=
□
greater
x
=
□
Get tutor help
1
2
3
Next