Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for 
x.

-15 x+60 <= 105quad AND 
quad14 x+11 <= -31
Choose 1 answer:
(A) 
x <= -3
(B) 
x >= -3
(C) 
x=-3
(D) There are no solutions
(E) All values of 
x are solutions

Solve for x x .\newline15x+60105 -15 x+60 \leq 105 \quad AND 14x+1131 \quad 14 x+11 \leq-31 \newlineChoose 11 answer:\newline(A) x3 x \leq-3 \newline(B) x3 x \geq-3 \newline(C) x=3 x=-3 \newline(D) There are no solutions\newline(E) All values of x x are solutions

Full solution

Q. Solve for x x .\newline15x+60105 -15 x+60 \leq 105 \quad AND 14x+1131 \quad 14 x+11 \leq-31 \newlineChoose 11 answer:\newline(A) x3 x \leq-3 \newline(B) x3 x \geq-3 \newline(C) x=3 x=-3 \newline(D) There are no solutions\newline(E) All values of x x are solutions
  1. Solve first inequality: Solve the first inequality 15x+60105-15x + 60 \leq 105.\newlineSubtract 6060 from both sides to isolate the term with xx.\newline15x+606010560-15x + 60 - 60 \leq 105 - 60\newline15x45-15x \leq 45\newlineNow, divide both sides by 15-15 to solve for xx. Remember that dividing by a negative number reverses the inequality sign.\newline15x154515-\frac{15x}{-15} \geq \frac{45}{-15}\newlinex3x \geq -3
  2. Solve second inequality: Solve the second inequality 14x+113114x + 11 \leq -31.\newlineSubtract 1111 from both sides to isolate the term with xx.\newline14x+1111311114x + 11 - 11 \leq -31 - 11\newline14x4214x \leq -42\newlineNow, divide both sides by 1414 to solve for xx.\newline14x144214\frac{14x}{14} \leq \frac{-42}{14}\newlinex3x \leq -3
  3. Combine solutions: Combine the solutions from Step 11 and Step 22 to find the common solution set.\newlineFrom Step 11, we have x3x \geq -3.\newlineFrom Step 22, we have x3x \leq -3.\newlineThe common solution that satisfies both inequalities is x=3x = -3.

More problems from Solve a quadratic equation by factoring