Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

y=ln tan((pi)/(4)+(x)/(2))

y=lntan(π4+x2)y=\ln\tan\left(\frac{\pi}{4}+\frac{x}{2}\right)

Full solution

Q. y=lntan(π4+x2)y=\ln\tan\left(\frac{\pi}{4}+\frac{x}{2}\right)
  1. Identify Outer Function: Identify the outer function and its derivative.\newlineThe outer function is the natural logarithm ln(u)\ln(u), where uu is an inner function. The derivative of ln(u)\ln(u) with respect to uu is 1u\frac{1}{u}.
  2. Identify Inner Function: Identify the inner function and its derivative.\newlineThe inner function is tan(π4+x2)\tan\left(\frac{\pi}{4} + \frac{x}{2}\right). To find its derivative, we will use the chain rule. The derivative of tan(v)\tan(v) with respect to vv is sec2(v)\sec^2(v), where vv is π4+x2\frac{\pi}{4} + \frac{x}{2}.
  3. Apply Chain Rule: Apply the chain rule.\newlineThe chain rule states that the derivative of a composite function ln(tan(v))\ln(\tan(v)) with respect to xx is the derivative of ln(u)\ln(u) with respect to uu times the derivative of uu with respect to xx. So we have:\newline\frac{dy}{dx} = \frac{d}{dx}[\ln(\tan(\left(\frac{\pi}{\(4\)} + \frac{x}{\(2\)}\right)))] = \left(\frac{\(1\)}{\tan(\left(\frac{\pi}{\(4\)} + \frac{x}{\(2\)}\right))}\right) * \frac{d}{dx}[\tan(\left(\frac{\pi}{\(4\)} + \frac{x}{\(2\)}\right))]
  4. Calculate Inner Function Derivative: Calculate the derivative of the inner function.\(\newlineWe need to find the derivative of tan(π4+x2)\tan\left(\frac{\pi}{4} + \frac{x}{2}\right) with respect to xx. Using the derivative of tan(v)\tan(v) which is sec2(v)\sec^2(v), we get:\newlineddx[tan(π4+x2)]=sec2(π4+x2)ddx[π4+x2]\frac{d}{dx}\left[\tan\left(\frac{\pi}{4} + \frac{x}{2}\right)\right] = \sec^2\left(\frac{\pi}{4} + \frac{x}{2}\right) \cdot \frac{d}{dx}\left[\frac{\pi}{4} + \frac{x}{2}\right]\newlineSince the derivative of π4\frac{\pi}{4} with respect to xx is 00 and the derivative of x2\frac{x}{2} with respect to xx is xx00, we have:\newlinexx11
  5. Combine Results: Combine the results from Step 33 and Step 44.\newlineNow we multiply the derivative of the outer function by the derivative of the inner function to get the final derivative:\newlinedydx=1tan(π4+x2)sec2(π4+x2)12\frac{dy}{dx} = \frac{1}{\tan(\frac{\pi}{4} + \frac{x}{2})} \cdot \sec^2(\frac{\pi}{4} + \frac{x}{2}) \cdot \frac{1}{2}
  6. Simplify Expression: Simplify the expression.\newlineWe know that sec2(v)\sec^2(v) is 1/cos2(v)1/\cos^2(v) and tan(v)\tan(v) is sin(v)/cos(v)\sin(v)/\cos(v). Therefore, we can simplify the expression by multiplying the sec2\sec^2 term by the reciprocal of the tan\tan term:\newlinedydx=(1sin(π4+x2)/cos(π4+x2))(1cos2(π4+x2))(12)\frac{dy}{dx} = \left(\frac{1}{\sin\left(\frac{\pi}{4} + \frac{x}{2}\right)/\cos\left(\frac{\pi}{4} + \frac{x}{2}\right)}\right) * \left(\frac{1}{\cos^2\left(\frac{\pi}{4} + \frac{x}{2}\right)}\right) * \left(\frac{1}{2}\right)
  7. Further Simplify Expression: Further simplify the expression.\newlineWe can simplify the expression by multiplying the cos\cos term in the numerator with the cos2\cos^2 term in the denominator:\newlinedydx=(cos(π4+x2)sin(π4+x2))(1cos2(π4+x2))(12)\frac{dy}{dx} = \left(\frac{\cos\left(\frac{\pi}{4} + \frac{x}{2}\right)}{\sin\left(\frac{\pi}{4} + \frac{x}{2}\right)}\right) \cdot \left(\frac{1}{\cos^2\left(\frac{\pi}{4} + \frac{x}{2}\right)}\right) \cdot \left(\frac{1}{2}\right)\newlinedydx=(1sin(π4+x2))(1cos(π4+x2))(12)\frac{dy}{dx} = \left(\frac{1}{\sin\left(\frac{\pi}{4} + \frac{x}{2}\right)}\right) \cdot \left(\frac{1}{\cos\left(\frac{\pi}{4} + \frac{x}{2}\right)}\right) \cdot \left(\frac{1}{2}\right)\newlinedydx=(1sin(π4+x2))sec(π4+x2)(12)\frac{dy}{dx} = \left(\frac{1}{\sin\left(\frac{\pi}{4} + \frac{x}{2}\right)}\right) \cdot \sec\left(\frac{\pi}{4} + \frac{x}{2}\right) \cdot \left(\frac{1}{2}\right)
  8. Recognize Cosecant Function: Recognize that 1sin(v)\frac{1}{\sin(v)} is csc(v)\csc(v). We can rewrite the expression using the cosecant function: dydx=csc(π4+x2)sec(π4+x2)12\frac{dy}{dx} = \csc\left(\frac{\pi}{4} + \frac{x}{2}\right) \cdot \sec\left(\frac{\pi}{4} + \frac{x}{2}\right) \cdot \frac{1}{2}
  9. Finalize Derivative: Finalize the derivative.\newlineThe final derivative of yy with respect to xx is:\newlinedydx=(12)csc(π4+x2)sec(π4+x2)\frac{dy}{dx} = \left(\frac{1}{2}\right) \cdot \csc\left(\frac{\pi}{4} + \frac{x}{2}\right) \cdot \sec\left(\frac{\pi}{4} + \frac{x}{2}\right)

More problems from Find derivatives of logarithmic functions