Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

y=((18x^(3)-5)/(3x^(3)))^(4)

y=(18x353x3)4 y=\left(\frac{18 x^{3}-5}{3 x^{3}}\right)^{4}

Full solution

Q. y=(18x353x3)4 y=\left(\frac{18 x^{3}-5}{3 x^{3}}\right)^{4}
  1. Simplify Function: First, simplify the function before taking the derivative.\newliney=(18x353x3)4y = \left(\frac{18x^3 - 5}{3x^3}\right)^4\newlineSimplify the fraction inside the parentheses by dividing both the numerator and the denominator by 3x33x^3.\newliney=(6x33x353x3)4y = \left(\frac{6x^3}{3x^3} - \frac{5}{3x^3}\right)^4\newliney=(253x3)4y = \left(2 - \frac{5}{3x^3}\right)^4\newlineNow the function is simplified.
  2. Apply Chain Rule: Next, apply the chain rule to find the derivative of yy with respect to xx. The chain rule states that the derivative of a composite function is the derivative of the outer function evaluated at the inner function times the derivative of the inner function.\newlineLet u=253x3u = 2 - \frac{5}{3}x^3, then y=u4y = u^4.\newlineFirst, find the derivative of yy with respect to uu, which is dydu=4u3\frac{dy}{du} = 4u^3.
  3. Find uu with respect to xx: Now, find the derivative of uu with respect to xx, dudx\frac{du}{dx}.
    u=2(53x3)u = 2 - \left(\frac{5}{3}x^3\right)
    dudx=0(53x4)\frac{du}{dx} = 0 - \left(-5 \cdot 3x^{-4}\right)
    dudx=15x4\frac{du}{dx} = 15x^{-4}
  4. Apply Chain Rule: Now, apply the chain rule by multiplying dydu\frac{dy}{du} by dudx\frac{du}{dx} to get dydx\frac{dy}{dx}.
    dydx=dydu×dudx\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}
    dydx=4u3×15x4\frac{dy}{dx} = 4u^3 \times 15x^{-4}
    Substitute uu back into the equation.
    dydx=4(253x3)3×15x4\frac{dy}{dx} = 4(2 - \frac{5}{3x^3})^3 \times 15x^{-4}
  5. Simplify Derivative: Finally, simplify the derivative expression.\newlinedydx=60x4(253x3)3\frac{dy}{dx} = 60x^{-4}(2 - \frac{5}{3x^3})^3\newlineThis is the derivative of the function yy with respect to xx.

More problems from Find derivatives of using multiple formulae