Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
y=3^(x).
Find 
(d^(2)y)/(dx^(2))

(d^(2)y)/(dx^(2))=

Let y=3x y=3^{x} .\newlineFind d2ydx2 \frac{d^{2} y}{d x^{2}} \newlined2ydx2= \frac{d^{2} y}{d x^{2}}=

Full solution

Q. Let y=3x y=3^{x} .\newlineFind d2ydx2 \frac{d^{2} y}{d x^{2}} \newlined2ydx2= \frac{d^{2} y}{d x^{2}}=
  1. Find Second Derivative: Now, we need to find the second derivative (d2y)/(dx2)(d^{2}y)/(dx^{2}). We differentiate dy/dx=3xln(3)dy/dx = 3^{x} \cdot \ln(3) with respect to xx again. Using the product rule, (d/dx)(uv)=uv+uv(d/dx)(u\cdot v) = u'v + uv', where u=3xu = 3^{x} and v=ln(3)v = \ln(3). Since ln(3)\ln(3) is a constant, its derivative is 00, and the derivative of 3x3^{x} is again 3xln(3)3^{x} \cdot \ln(3). So, dy/dx=3xln(3)dy/dx = 3^{x} \cdot \ln(3)00.
  2. Apply Product Rule: Simplify the expression.\newlined2ydx2=3xln(3)ln(3)\frac{d^{2}y}{dx^{2}} = 3^{x} \cdot \ln(3) \cdot \ln(3) + 3xln(3)03^{x} \cdot \ln(3) \cdot 0.\newlineSince anything times 00 is 00, the second term disappears.\newlined2ydx2=3x(ln(3))2\frac{d^{2}y}{dx^{2}} = 3^{x} \cdot (\ln(3))^{2}.

More problems from Simplify variable expressions using properties