Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

x=(-5+-sqrt((5)^(2)-4(1)(6)))/(2(1))

x=5±(5)24(1)(6)2(1) x=\frac{-5 \pm \sqrt{(5)^{2}-4(1)(6)}}{2(1)}

Full solution

Q. x=5±(5)24(1)(6)2(1) x=\frac{-5 \pm \sqrt{(5)^{2}-4(1)(6)}}{2(1)}
  1. Identify Quadratic Equation: We are asked to solve the quadratic equation using the quadratic formula: x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. In this case, the quadratic equation is already in the form of the quadratic formula, where a=1a = 1, b=5b = -5, and c=66c = -66 (since 4×11×6=264-4 \times 11 \times 6 = -264).
  2. Calculate Discriminant: First, we calculate the discriminant, which is the part under the square root in the quadratic formula: b24acb^2 - 4ac. Discriminant = (5)24(1)(66)=25+264=289(5)^2 - 4(1)(-66) = 25 + 264 = 289.
  3. Find Square Root: Next, we take the square root of the discriminant: 289\sqrt{289}. 289=17\sqrt{289} = 17.
  4. Apply Quadratic Formula: Now we can use the quadratic formula to find the two possible values for xx.x=(5)±172×1=5±172x = \frac{-(-5) \pm \sqrt{17}}{2 \times 1} = \frac{5 \pm \sqrt{17}}{2}.
  5. Calculate First Solution: We have two solutions for xx, one using the plus sign and one using the minus sign.\newlineFirst solution: x=(5+17)/2=22/2=11x = (5 + 17) / 2 = 22 / 2 = 11.\newlineSecond solution: x=(517)/2=12/2=6x = (5 - 17) / 2 = -12 / 2 = -6.
  6. Calculate Second Solution: We have found the two values of xx that satisfy the quadratic equation.

More problems from Find derivatives of using multiple formulae