Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

x^(2)+(1-a)x+a^(2)-(6)/(4)a-(3)/(4)=0

x2+(1a)x+a264a34=0 x^{2}+(1-a) x+a^{2}-\frac{6}{4} a-\frac{3}{4}=0

Full solution

Q. x2+(1a)x+a264a34=0 x^{2}+(1-a) x+a^{2}-\frac{6}{4} a-\frac{3}{4}=0
  1. Identify Quadratic Equation: We are given the quadratic equation x2+(1a)x+a264a34=0x^2 + (1-a)x + a^2 - \frac{6}{4}a - \frac{3}{4} = 0. To find the roots, we need to solve for xx. The general form of a quadratic equation is ax2+bx+c=0ax^2 + bx + c = 0, and the roots can be found using the quadratic formula x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. In our case, a=1a = 1, b=(1a)b = (1-a), and c=a264a34c = a^2 - \frac{6}{4}a - \frac{3}{4}.
  2. Simplify Constant Term: First, let's simplify the constant term cc by combining like terms: a264a34a^2 - \frac{6}{4}a - \frac{3}{4}. We can write 64a\frac{6}{4}a as 32a\frac{3}{2}a to make it easier to combine with 34\frac{3}{4}.\newlinec=a232a34c = a^2 - \frac{3}{2}a - \frac{3}{4}
  3. Calculate Discriminant: Now, let's calculate the discriminant, which is the part under the square root in the quadratic formula: b24acb^2 - 4ac. Discriminant = (1a)24(1)(a232a34)(1-a)^2 - 4(1)(a^2 - \frac{3}{2}a - \frac{3}{4})
  4. Expand and Simplify: We expand (1a)2(1-a)^2 and simplify the expression:\newlineDiscriminant = (12a+a2)4(a232a34)(1 - 2a + a^2) - 4(a^2 - \frac{3}{2}a - \frac{3}{4})
  5. Combine Like Terms: Distribute the 4-4 across the terms in the parentheses:\newlineDiscriminant = 12a+a24a2+6a+31 - 2a + a^2 - 4a^2 + 6a + 3
  6. Use Quadratic Formula: Combine like terms to simplify the discriminant:\newlineDiscriminant = 12a+a24a2+6a+31 - 2a + a^2 - 4a^2 + 6a + 3\newlineDiscriminant = 3a2+4a+4-3a^2 + 4a + 4
  7. Formula for Roots: Now we can use the quadratic formula to find the roots:\newlinex=(1a)±3a2+4a+421x = \frac{{-\left(1-a\right) \pm \sqrt{{-3a^2 + 4a + 4}}}}{{2\cdot1}}\newlinex=(1a)±3a2+4a+42x = \frac{{-\left(1-a\right) \pm \sqrt{{-3a^2 + 4a + 4}}}}{2}
  8. Formula for Roots: Now we can use the quadratic formula to find the roots:\newlinex=(1a)±3a2+4a+421x = \frac{-(1-a) \pm \sqrt{-3a^2 + 4a + 4}}{2\cdot1}\newlinex=(1a)±3a2+4a+42x = \frac{-(1-a) \pm \sqrt{-3a^2 + 4a + 4}}{2}We have found the formula for the roots of the quadratic equation in terms of aa. The roots will depend on the value of aa, and we can use this formula to find specific roots for any given value of aa.

More problems from Find derivatives of using multiple formulae