Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which value of 
x satisfies the equation 
(2)/(3)(x-(1)/(4))=(19)/(6) ?
6
5

-5

-6

Which value of x x satisfies the equation 23(x14)=196 \frac{2}{3}\left(x-\frac{1}{4}\right)=\frac{19}{6} ?\newline66\newline55\newline5 -5 \newline6 -6

Full solution

Q. Which value of x x satisfies the equation 23(x14)=196 \frac{2}{3}\left(x-\frac{1}{4}\right)=\frac{19}{6} ?\newline66\newline55\newline5 -5 \newline6 -6
  1. Write Equation: Write down the equation to be solved.\newline(23)(x14)=196(\frac{2}{3})(x - \frac{1}{4}) = \frac{19}{6}
  2. Multiply by Reciprocal: Multiply both sides of the equation by the reciprocal of (23)(\frac{2}{3}) to isolate the term with xx. The reciprocal of (23)(\frac{2}{3}) is (32)(\frac{3}{2}). Multiplying both sides by (32)(\frac{3}{2}) gives: (32)×(23)(x14)=(32)×(196)(\frac{3}{2}) \times (\frac{2}{3})(x - \frac{1}{4}) = (\frac{3}{2}) \times (\frac{19}{6})
  3. Simplify Equation: Simplify both sides of the equation.\newlineOn the left side, (32)×(23)=1(\frac{3}{2}) \times (\frac{2}{3}) = 1, so we are left with x14x - \frac{1}{4}.\newlineOn the right side, (32)×(196)=(3×192×6)=5712=194(\frac{3}{2}) \times (\frac{19}{6}) = (\frac{3 \times 19}{2 \times 6}) = \frac{57}{12} = \frac{19}{4}.\newlineSo, the equation simplifies to:\newlinex14=194x - \frac{1}{4} = \frac{19}{4}
  4. Add 14\frac{1}{4}: Add 14\frac{1}{4} to both sides of the equation to solve for xx.x14+14=194+14x - \frac{1}{4} + \frac{1}{4} = \frac{19}{4} + \frac{1}{4}x=194+14x = \frac{19}{4} + \frac{1}{4}
  5. Combine Fractions: Combine the fractions on the right side of the equation.\newline194+14=19+14=204\frac{19}{4} + \frac{1}{4} = \frac{19 + 1}{4} = \frac{20}{4}\newlinex=204x = \frac{20}{4}
  6. Simplify Fraction: Simplify the fraction on the right side of the equation to find the value of xx.204=5\frac{20}{4} = 5x=5x = 5

More problems from Powers with negative bases

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago