Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

(3^(3)*6^(6))^(-3)=?
Choose 1 answer:
(A) 
(1)/(3^(9)*6^(18))
(B) 
(6^(18))/(3^(9))
(c) 
(3^(9))/(6^(18))

Select the equivalent expression.\newline(3366)3=(3^{3}\cdot6^{6})^{-3}=?\newlineChoose 11 answer:\newline(A) 139618\frac{1}{3^{9}\cdot6^{18}}\newline(B) 61839\frac{6^{18}}{3^{9}}\newline(C) 39618\frac{3^{9}}{6^{18}}

Full solution

Q. Select the equivalent expression.\newline(3366)3=(3^{3}\cdot6^{6})^{-3}=?\newlineChoose 11 answer:\newline(A) 139618\frac{1}{3^{9}\cdot6^{18}}\newline(B) 61839\frac{6^{18}}{3^{9}}\newline(C) 39618\frac{3^{9}}{6^{18}}
  1. Understand Problem: Understand the problem and apply the power of a product rule.\newlineThe problem asks us to find an equivalent expression for (3366)3(3^{3}\cdot6^{6})^{-3}. According to the power of a product rule, (ab)n=anbn(ab)^{n} = a^{n} \cdot b^{n}, we can apply the negative exponent to both terms inside the parentheses.
  2. Apply Product Rule: Apply the negative exponent to both 333^3 and 666^6.\newline(3366)(3)=(33)(3)(66)(3)(3^{3}*6^{6})^{(-3)} = (3^3)^{(-3)} * (6^6)^{(-3)}
  3. Apply Negative Exponent: Simplify the expression using the power of a power rule.\newlineAccording to the power of a power rule, (am)n=amn(a^m)^n = a^{m*n}, we multiply the exponents.\newline(33)3×(66)3=33(3)×66(3)(3^3)^{-3} \times (6^6)^{-3} = 3^{3*(-3)} \times 6^{6*(-3)}
  4. Simplify Expression: Perform the multiplication of the exponents. 33(3)×66(3)=39×6183^{3*(-3)} \times 6^{6*(-3)} = 3^{-9} \times 6^{-18}
  5. Perform Exponent Multiplication: Convert the negative exponents to positive exponents by taking the reciprocal.\newlineAccording to the negative exponent rule, an=1ana^{-n} = \frac{1}{a^n}, we can rewrite the expression with positive exponents in the denominator.\newline39×618=139×16183^{-9} \times 6^{-18} = \frac{1}{3^9} \times \frac{1}{6^{18}}
  6. Convert Negative Exponents: Combine the fractions.\newlineSince we are multiplying fractions, we multiply the numerators and the denominators separately.\newline139×1618=139×618\frac{1}{3^9} \times \frac{1}{6^{18}} = \frac{1}{3^9 \times 6^{18}}
  7. Combine Fractions: Identify the correct answer from the given options.\newlineThe expression we have found is 139×618\frac{1}{3^9 \times 6^{18}}, which matches option (A)(A).

More problems from Evaluate expressions using properties of exponents

QuestionGet tutor helpright-arrow

Posted 9 months ago

QuestionGet tutor helpright-arrow

Posted 11 months ago