Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Select the equivalent expression.

((b^(7))/(4^(5)))^(-3)=?
Choose 1 answer:
(A) 
(b^(21))/(4^(15))
(B) 
(4^(15))/(b^(21))
(c) 
b^(-21)*4^(-15)

Select the equivalent expression.\newline(b745)3=?\left(\frac{b^{7}}{4^{5}}\right)^{-3}=\,?\newlineChoose 11 answer:\newline(A) b21415\frac{b^{21}}{4^{15}}\newline(B) 415b21\frac{4^{15}}{b^{21}}\newline(C) b21415b^{-21}\cdot 4^{-15}

Full solution

Q. Select the equivalent expression.\newline(b745)3=?\left(\frac{b^{7}}{4^{5}}\right)^{-3}=\,?\newlineChoose 11 answer:\newline(A) b21415\frac{b^{21}}{4^{15}}\newline(B) 415b21\frac{4^{15}}{b^{21}}\newline(C) b21415b^{-21}\cdot 4^{-15}
  1. Apply negative exponent rule: Apply the negative exponent rule.\newlineThe negative exponent rule states that an=1ana^{-n} = \frac{1}{a^n}. Therefore, we can rewrite the expression as the reciprocal of the base raised to the positive exponent.\newline(b745)3=1(b745)3\left(\frac{b^{7}}{4^{5}}\right)^{-3} = \frac{1}{\left(\frac{b^{7}}{4^{5}}\right)^{3}}
  2. Apply power of quotient rule: Apply the power of a quotient rule.\newlineThe power of a quotient rule states that (a/b)n=an/bn(a/b)^n = a^n / b^n. Therefore, we can apply this rule to the expression inside the reciprocal.\newline1/((b7)/(45))3=1/((b7)3/(45)3)1/((b^{7})/(4^{5}))^{3} = 1/((b^{7})^3 / (4^{5})^3)
  3. Simplify powers: Simplify the powers.\newlineNow we simplify the powers by multiplying the exponents.\newline1(b7)3/(45)3=1b73/453=1b21/415\frac{1}{(b^{7})^{3} / (4^{5})^{3}} = \frac{1}{b^{7*3} / 4^{5*3}} = \frac{1}{b^{21} / 4^{15}}
  4. Invert fraction: Invert the fraction to remove the reciprocal.\newlineTo remove the reciprocal, we can invert the fraction.\newline1b21/415=415b21\frac{1}{b^{21} / 4^{15}} = \frac{4^{15}}{b^{21}}
  5. Check answer choices: Check the answer choices.\newlineWe need to match our result with the given answer choices.\newline415/b214^{15} / b^{21} corresponds to answer choice (B).

More problems from Evaluate expressions using properties of exponents

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago