Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which situation would yield the highest amount in the account?
(A) Depositing $200 in an account the earns 5% simple interest for two years.
(B) Depositing $400 in an account the earns 3% interest compounded annually
(C) Depositing $200 in an account the earns 5% interest compounded annually for two years.
(D) Depositing $400 in an account the earns 3% simple interest for two years.

Which situation would yield the highest amount in the account?\newline(A) Depositing $200 \$ 200 in an account the earns 5% 5 \% simple interest for two years.\newline(B) Depositing $400 \$ 400 in an account the earns 3% 3 \% interest compounded annually\newline(C) Depositing $200 \$ 200 in an account the earns 5% 5 \% interest compounded annually for two years.\newline(D) Depositing $400 \$ 400 in an account the earns 3% 3 \% simple interest for two years.

Full solution

Q. Which situation would yield the highest amount in the account?\newline(A) Depositing $200 \$ 200 in an account the earns 5% 5 \% simple interest for two years.\newline(B) Depositing $400 \$ 400 in an account the earns 3% 3 \% interest compounded annually\newline(C) Depositing $200 \$ 200 in an account the earns 5% 5 \% interest compounded annually for two years.\newline(D) Depositing $400 \$ 400 in an account the earns 3% 3 \% simple interest for two years.
  1. Calculate Option A: Calculate the final amount for option A using the formula for simple interest.\newlineSimple interest formula: A=P(1+rt)A = P(1 + rt)\newlineWhere AA is the amount of money accumulated after nn years, including interest.\newlinePP is the principal amount (the initial amount of money).\newlinerr is the annual interest rate (in decimal).\newlinett is the time the money is invested for, in years.\newlineFor option A:\newlineP=$(200)P = \$(200)\newliner=5%=0.05r = 5\% = 0.05 (as a decimal)\newlinet=2t = 2 years\newlineA=$(200)(1+0.05×2)A = \$(200)(1 + 0.05 \times 2)
  2. Calculate Option B: Perform the calculation for option A.\newlineA=($)200(1+0.10)A = (\$)200(1 + 0.10)\newlineA=($)200(1.10)A = (\$)200(1.10)\newlineA=($)220A = (\$)220
  3. Calculate Option C: Calculate the final amount for option B using the formula for compound interest.\newlineCompound interest formula: A=P(1+r/n)(nt)A = P(1 + r/n)^{(nt)}\newlineWhere AA is the amount of money accumulated after nn years, including interest.\newlinePP is the principal amount.\newlinerr is the annual interest rate (in decimal).\newlinenn is the number of times that interest is compounded per year.\newlinett is the time the money is invested for, in years.\newlineFor option B:\newlineP=$400P = \$400\newliner=3%=0.03r = 3\% = 0.03 (as a decimal)\newlinen=1n = 1 (compounded annually)\newlineAA00 years\newlineAA11
  4. Calculate Option D: Perform the calculation for option B.\newlineA=$(400)(1+0.03)2A = \$(400)(1 + 0.03)^2\newlineA=$(400)(1.03)2A = \$(400)(1.03)^2\newlineA=$(400)×1.0609A = \$(400) \times 1.0609\newlineA=$424.36A = \$424.36
  5. Compare Final Amounts: Calculate the final amount for option C using the compound interest formula.\newlineFor option C:\newlineP=$200P = \$200\newliner=5%=0.05r = 5\% = 0.05 (as a decimal)\newlinen=1n = 1 (compounded annually)\newlinet=2t = 2 years\newlineA=$200(1+0.05/1)(12)A = \$200(1 + 0.05/1)^{(1*2)}
  6. Compare Final Amounts: Calculate the final amount for option C using the compound interest formula.\newlineFor option C:\newlineP=$200P = \$200\newliner=5%=0.05r = 5\% = 0.05 (as a decimal)\newlinen=1n = 1 (compounded annually)\newlinet=2t = 2 years\newlineA=$200(1+0.05/1)(12)A = \$200(1 + 0.05/1)^{(1*2)}Perform the calculation for option C.\newlineA=$200(1+0.05)2A = \$200(1 + 0.05)^2\newlineA=$200(1.05)2A = \$200(1.05)^2\newlineA=$200×1.1025A = \$200 \times 1.1025\newlineA=$220.50A = \$220.50
  7. Compare Final Amounts: Calculate the final amount for option C using the compound interest formula.\newlineFor option C:\newlineP=$200P = \$200\newliner=5%=0.05r = 5\% = 0.05 (as a decimal)\newlinen=1n = 1 (compounded annually)\newlinet=2t = 2 years\newlineA=$200(1+0.05/1)(12)A = \$200(1 + 0.05/1)^{(1*2)}Perform the calculation for option C.\newlineA=$200(1+0.05)2A = \$200(1 + 0.05)^2\newlineA=$200(1.05)2A = \$200(1.05)^2\newlineA=$200×1.1025A = \$200 \times 1.1025\newlineA=$220.50A = \$220.50Calculate the final amount for option D using the simple interest formula.\newlineFor option D:\newlineP=$400P = \$400\newliner=5%=0.05r = 5\% = 0.0500 (as a decimal)\newlinet=2t = 2 years\newliner=5%=0.05r = 5\% = 0.0522
  8. Compare Final Amounts: Calculate the final amount for option C using the compound interest formula.\newlineFor option C:\newlineP=$200P = \$200\newliner=5%=0.05r = 5\% = 0.05 (as a decimal)\newlinen=1n = 1 (compounded annually)\newlinet=2t = 2 years\newlineA=$200(1+0.05/1)(12)A = \$200(1 + 0.05/1)^{(1*2)}Perform the calculation for option C.\newlineA=$200(1+0.05)2A = \$200(1 + 0.05)^2\newlineA=$200(1.05)2A = \$200(1.05)^2\newlineA=$200×1.1025A = \$200 \times 1.1025\newlineA=$220.50A = \$220.50Calculate the final amount for option D using the simple interest formula.\newlineFor option D:\newlineP=$400P = \$400\newliner=5%=0.05r = 5\% = 0.0500 (as a decimal)\newlinet=2t = 2 years\newliner=5%=0.05r = 5\% = 0.0522Perform the calculation for option D.\newliner=5%=0.05r = 5\% = 0.0533\newliner=5%=0.05r = 5\% = 0.0544\newliner=5%=0.05r = 5\% = 0.0555
  9. Compare Final Amounts: Calculate the final amount for option C using the compound interest formula.\newlineFor option C:\newlineP=$200P = \$200\newliner=5%=0.05r = 5\% = 0.05 (as a decimal)\newlinen=1n = 1 (compounded annually)\newlinet=2t = 2 years\newlineA=$200(1+0.05/1)(12)A = \$200(1 + 0.05/1)^{(1*2)}Perform the calculation for option C.\newlineA=$200(1+0.05)2A = \$200(1 + 0.05)^2\newlineA=$200(1.05)2A = \$200(1.05)^2\newlineA=$200×1.1025A = \$200 \times 1.1025\newlineA=$220.50A = \$220.50Calculate the final amount for option D using the simple interest formula.\newlineFor option D:\newlineP=$400P = \$400\newliner=5%=0.05r = 5\% = 0.0500 (as a decimal)\newlinet=2t = 2 years\newliner=5%=0.05r = 5\% = 0.0522Perform the calculation for option D.\newliner=5%=0.05r = 5\% = 0.0533\newliner=5%=0.05r = 5\% = 0.0544\newliner=5%=0.05r = 5\% = 0.0555Compare the final amounts from all options to determine the highest amount.\newlineOption A: r=5%=0.05r = 5\% = 0.0566\newlineOption B: r=5%=0.05r = 5\% = 0.0577\newlineOption C: r=5%=0.05r = 5\% = 0.0588\newlineOption D: r=5%=0.05r = 5\% = 0.0599\newlineThe highest amount is from option B: r=5%=0.05r = 5\% = 0.0577.

More problems from Evaluate two-variable equations: word problems