Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which recursive sequence would produce the sequence 
9,-14,9,dots?

a_(1)=9 and 
a_(n)=-a_(n-1)-5

a_(1)=9 and 
a_(n)=-5a_(n-1)-1

a_(1)=9 and 
a_(n)=4a_(n-1)-2

a_(1)=9 and 
a_(n)=-2a_(n-1)+4

Which recursive sequence would produce the sequence 9,14,9,? 9,-14,9, \ldots ? \newlinea1=9 a_{1}=9 and an=an15 a_{n}=-a_{n-1}-5 \newlinea1=9 a_{1}=9 and an=5an11 a_{n}=-5 a_{n-1}-1 \newlinea1=9 a_{1}=9 and an=4an12 a_{n}=4 a_{n-1}-2 \newlinea1=9 a_{1}=9 and an=2an1+4 a_{n}=-2 a_{n-1}+4

Full solution

Q. Which recursive sequence would produce the sequence 9,14,9,? 9,-14,9, \ldots ? \newlinea1=9 a_{1}=9 and an=an15 a_{n}=-a_{n-1}-5 \newlinea1=9 a_{1}=9 and an=5an11 a_{n}=-5 a_{n-1}-1 \newlinea1=9 a_{1}=9 and an=4an12 a_{n}=4 a_{n-1}-2 \newlinea1=9 a_{1}=9 and an=2an1+4 a_{n}=-2 a_{n-1}+4
  1. Test Recursive Formula 11: Let's test each given recursive formula by applying it to the initial term a1=9a_1 = 9 to see if it produces the sequence 9,14,9,9, -14, 9, \ldots.\newlineFirst, we'll test the recursive formula an=an15a_{n} = -a_{n-1} - 5 with a1=9a_1 = 9.\newlinea2=a15=95=14a_2 = -a_1 - 5 = -9 - 5 = -14\newlinea3=a25=(14)5=145=9a_3 = -a_2 - 5 = -(-14) - 5 = 14 - 5 = 9\newlineThis matches the given sequence 9,14,9,9, -14, 9, \ldots.
  2. Test Recursive Formula 22: Now let's test the second recursive formula an=5an11a_{n} = -5a_{n-1} - 1 with a1=9a_1 = 9.\newlinea2=5a11=5×91=451=46a_2 = -5a_1 - 1 = -5\times9 - 1 = -45 - 1 = -46\newlineThis does not match the second term of the given sequence (14-14), so this recursive formula is incorrect.
  3. Test Recursive Formula 33: Next, we'll test the third recursive formula an=4an12a_{n} = 4a_{n-1} - 2 with a1=9a_1 = 9.\newlinea2=4a12=4×92=362=34a_2 = 4a_1 - 2 = 4\times9 - 2 = 36 - 2 = 34\newlineThis does not match the second term of the given sequence (14-14), so this recursive formula is incorrect.
  4. Test Recursive Formula 44: Finally, let's test the fourth recursive formula an=2an1+4a_{n} = -2a_{n-1} + 4 with a1=9a_1 = 9.\newlinea2=2a1+4=2×9+4=18+4=14a_2 = -2a_1 + 4 = -2\times9 + 4 = -18 + 4 = -14\newlinea3=2a2+4=2×(14)+4=28+4=32a_3 = -2a_2 + 4 = -2\times(-14) + 4 = 28 + 4 = 32\newlineThis does not match the third term of the given sequence (99), so this recursive formula is incorrect.

More problems from Find derivatives of using multiple formulae