Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which recursive sequence would produce the sequence 
2,1,2,dots ?

a_(1)=2 and 
a_(n)=-2a_(n-1)+5

a_(1)=2 and 
a_(n)=-a_(n-1)+3

a_(1)=2 and 
a_(n)=3a_(n-1)-1

a_(1)=2 and 
a_(n)=5a_(n-1)-2

Which recursive sequence would produce the sequence 2,1,2, 2,1,2, \ldots ?\newlinea1=2 a_{1}=2 and an=2an1+5 a_{n}=-2 a_{n-1}+5 \newlinea1=2 a_{1}=2 and an=an1+3 a_{n}=-a_{n-1}+3 \newlinea1=2 a_{1}=2 and an=3an11 a_{n}=3 a_{n-1}-1 \newlinea1=2 a_{1}=2 and an=5an12 a_{n}=5 a_{n-1}-2

Full solution

Q. Which recursive sequence would produce the sequence 2,1,2, 2,1,2, \ldots ?\newlinea1=2 a_{1}=2 and an=2an1+5 a_{n}=-2 a_{n-1}+5 \newlinea1=2 a_{1}=2 and an=an1+3 a_{n}=-a_{n-1}+3 \newlinea1=2 a_{1}=2 and an=3an11 a_{n}=3 a_{n-1}-1 \newlinea1=2 a_{1}=2 and an=5an12 a_{n}=5 a_{n-1}-2
  1. Check First Option: Let's start by checking the first option:\newlinea1=2a_{1}=2 and an=2an1+5a_{n}=-2a_{n-1}+5\newlineWe know a1=2a_{1}=2, so let's find a2a_{2}:\newlinea2=2a1+5a_{2}=-2a_{1}+5\newlinea2=2×2+5a_{2}=-2\times 2+5\newlinea2=4+5a_{2}=-4+5\newlinea2=1a_{2}=1
  2. Find a2a_{2}: Now let's find a3a_{3} using the same formula:\newlinea3=2a2+5a_{3}=-2a_{2}+5\newlinea3=2×1+5a_{3}=-2\times 1+5\newlinea3=2+5a_{3}=-2+5\newlinea3=3a_{3}=3\newlineThis does not match the given sequence, which should have a3=2a_{3}=2.
  3. Check Second Option: Let's check the second option:\newlinea1=2a_{1}=2 and an=an1+3a_{n}=-a_{n-1}+3\newlineWe know a1=2a_{1}=2, so let's find a2a_{2}:\newlinea2=a1+3a_{2}=-a_{1}+3\newlinea2=2+3a_{2}=-2+3\newlinea2=1a_{2}=1
  4. Find a3a_{3}: Now let's find a3a_{3} using the same formula:\newlinea3=a2+3a_{3}=-a_{2}+3\newlinea3=1+3a_{3}=-1+3\newlinea3=2a_{3}=2\newlineThis matches the given sequence so far. Let's find a4a_{4} to confirm the pattern:\newlinea4=a3+3a_{4}=-a_{3}+3\newlinea4=2+3a_{4}=-2+3\newlinea4=1a_{4}=1
  5. Find a4a_{4}: The sequence we have so far with this formula is 2,1,2,12, 1, 2, 1, which matches the given pattern. We can stop here as we have found a recursive sequence that produces the given sequence.

More problems from Find derivatives of using multiple formulae