Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which of these strategies would eliminate a variable in the system of equations?

{[2x+8y=-3],[3x+6y=-4]:}
Choose 2 answers:
A Multiply the top equation by 3 , multiply the bottom equation by -2 , then add the equations.
B Multiply the top equation by 3 , multiply the bottom equation by 4 , then subtract the bottom equation from the top equation.
C Multiply the top equation by -4 , multiply the bottom equation by 3 , then add the equations.

Which of these strategies would eliminate a variable in the system of equations?\newline{2x+8y=3 3x+6y=4\begin{cases} 2x+8y=-3 \ 3x+6y=-4 \end{cases}\newlineChoose 22 answers:\newlineA Multiply the top equation by 33, multiply the bottom equation by 2-2, then add the equations.\newlineB Multiply the top equation by 33, multiply the bottom equation by 44, then subtract the bottom equation from the top equation.\newlineC Multiply the top equation by 4-4, multiply the bottom equation by 33, then add the equations.

Full solution

Q. Which of these strategies would eliminate a variable in the system of equations?\newline{2x+8y=3 3x+6y=4\begin{cases} 2x+8y=-3 \ 3x+6y=-4 \end{cases}\newlineChoose 22 answers:\newlineA Multiply the top equation by 33, multiply the bottom equation by 2-2, then add the equations.\newlineB Multiply the top equation by 33, multiply the bottom equation by 44, then subtract the bottom equation from the top equation.\newlineC Multiply the top equation by 4-4, multiply the bottom equation by 33, then add the equations.
  1. Analyze System of Equations: Analyze the given system of equations to determine how to eliminate a variable.\newlineThe system of equations is:\newline{2x+8y=33x+6y=4 \begin{cases} 2x + 8y = -3 \\ 3x + 6y = -4 \end{cases} \newlineTo eliminate a variable, we need to make the coefficients of either x or y in both equations the same with opposite signs so that when we add or subtract the equations, one of the variables cancels out.
  2. Apply Strategy A: Apply strategy A to see if it eliminates a variable.\newlineStrategy A suggests:\newlineMultiply the top equation by 33 and the bottom equation by 2-2.\newlineThe equations become:\newline{(2x+8y)3=33(3x+6y)2=42 \begin{cases} (2x + 8y) \cdot 3 = -3 \cdot 3 \\ (3x + 6y) \cdot -2 = -4 \cdot -2 \end{cases} \newlineWhich simplifies to:\newline{6x+24y=96x12y=8 \begin{cases} 6x + 24y = -9 \\ -6x - 12y = 8 \end{cases} \newlineNow, add the equations:\newline(6x+24y)+(6x12y)=9+8 (6x + 24y) + (-6x - 12y) = -9 + 8 \newline6x6x+24y12y=1 6x - 6x + 24y - 12y = -1 \newline0x+12y=1 0x + 12y = -1 \newlineThe x variable is eliminated.
  3. Apply Strategy B: Apply strategy B to see if it eliminates a variable.\newlineStrategy B suggests:\newlineMultiply the top equation by 33 and the bottom equation by 44, then subtract the bottom equation from the top equation.\newlineThe equations become:\newline{(2x+8y)3=33(3x+6y)4=44 \begin{cases} (2x + 8y) \cdot 3 = -3 \cdot 3 \\ (3x + 6y) \cdot 4 = -4 \cdot 4 \end{cases} \newlineWhich simplifies to:\newline{6x+24y=912x+24y=16 \begin{cases} 6x + 24y = -9 \\ 12x + 24y = -16 \end{cases} \newlineNow, subtract the bottom equation from the top equation:\newline(6x+24y)(12x+24y)=9(16) (6x + 24y) - (12x + 24y) = -9 - (-16) \newline6x12x+24y24y=9+16 6x - 12x + 24y - 24y = -9 + 16 \newline6x+0y=7 -6x + 0y = 7 \newlineThe y variable is eliminated.
  4. Apply Strategy C: Apply strategy C to see if it eliminates a variable.\newlineStrategy C suggests:\newlineMultiply the top equation by 4-4 and the bottom equation by 33.\newlineThe equations become:\newline{(2x+8y)4=34(3x+6y)3=43 \begin{cases} (2x + 8y) \cdot -4 = -3 \cdot -4 \\ (3x + 6y) \cdot 3 = -4 \cdot 3 \end{cases} \newlineWhich simplifies to:\newline{8x32y=129x+18y=12 \begin{cases} -8x - 32y = 12 \\ 9x + 18y = -12 \end{cases} \newlineNow, add the equations:\newline(8x32y)+(9x+18y)=12+(12) (-8x - 32y) + (9x + 18y) = 12 + (-12) \newline8x+9x32y+18y=0 -8x + 9x - 32y + 18y = 0 \newlinex14y=0 x - 14y = 0 \newlineThe x variable is not eliminated, and neither is the y variable.

More problems from Identify independent and dependent variables