Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which of the following is equivalent to 
log_(c)(16)*log_(2)(c) ?
Choose 1 answer:
(A) 4
(B) 8
(c) 
log(8)
(D) 
log_(c)(4)

Which of the following is equivalent to logc(16)log2(c) \log _{c}(16) \cdot \log _{2}(c) ?\newlineChoose 11 answer:\newline(A) 44\newline(B) 88\newline(C) log(8) \log (8) \newline(D) logc(4) \log _{c}(4)

Full solution

Q. Which of the following is equivalent to logc(16)log2(c) \log _{c}(16) \cdot \log _{2}(c) ?\newlineChoose 11 answer:\newline(A) 44\newline(B) 88\newline(C) log(8) \log (8) \newline(D) logc(4) \log _{c}(4)
  1. Recognize change of base: Recognize the use of the change of base formula.\newlineThe expression logc(16)log2(c)\log_{c}(16)\cdot\log_{2}(c) involves two different logarithmic bases, cc and 22. We can use the change of base formula to rewrite one of the logarithms in terms of the other base.\newlineChange of Base Formula: logb(a)=logk(a)logk(b)\log_{b}(a) = \frac{\log_{k}(a)}{\log_{k}(b)}
  2. Apply change of base to log2(c)\log_{2}(c): Apply the change of base formula to log2(c)\log_{2}(c).\newlineWe can rewrite log2(c)\log_{2}(c) using base cc as follows:\newlinelog2(c)=logc(c)logc(2)\log_{2}(c) = \frac{\log_{c}(c)}{\log_{c}(2)}\newlineSince logc(c)=1\log_{c}(c) = 1 (because any log base itself is 11), we have:\newlinelog2(c)=1logc(2)\log_{2}(c) = \frac{1}{\log_{c}(2)}
  3. Substitute expression from Step 22: Substitute the expression from Step 22 into the original expression.\newlineNow we replace log2(c)\log_{2}(c) in the original expression with the equivalent expression from Step 22:\newlinelogc(16)log2(c)=logc(16)(1logc(2))\log_{c}(16)\cdot\log_{2}(c) = \log_{c}(16) \cdot \left(\frac{1}{\log_{c}(2)}\right)
  4. Simplify the expression: Simplify the expression.\newlineWhen we multiply logc(16)\log_{c}(16) by 1logc(2)\frac{1}{\log_{c}(2)}, we get:\newlinelogc(16)logc(2)\frac{\log_{c}(16)}{\log_{c}(2)}
  5. Recognize division of logarithms: Recognize that this is a division of logarithms with the same base.\newlineWe can use the quotient property of logarithms to combine the two logarithms into one.\newlineQuotient Property: logb(PQ)=logb(P)logb(Q)\log_{b}\left(\frac{P}{Q}\right) = \log_{b}(P) - \log_{b}(Q)\newlinelogc(16)logc(2)=logc(162)\frac{\log_{c}(16)}{\log_{c}(2)} = \log_{c}\left(\frac{16}{2}\right)
  6. Calculate division inside logarithm: Calculate the division inside the logarithm.\newline1616 divided by 22 is 88, so we have:\newlinelogc(162)=logc(8)\log_{c}(\frac{16}{2}) = \log_{c}(8)
  7. Match result with given options: Match the result with the given options.\newlineThe expression logc(8)\log_{c}(8) matches option (C) from the given choices.

More problems from Product property of logarithms