Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which of the following is equivalent to 
log_(7)(a)*log_(b)(7) ?
Choose 1 answer:
(A) 
log(7)
(B) 
log(7a)
(c) 
log_(a)(b)
(D) 
log_(b)(a)

Which of the following is equivalent to log7(a)logb(7) \log _{7}(a) \cdot \log _{b}(7) ?\newlineChoose 11 answer:\newline(A) log(7) \log (7) \newline(B) log(7a) \log (7 a) \newline(C) loga(b) \log _{a}(b) \newline(D) logb(a) \log _{b}(a)

Full solution

Q. Which of the following is equivalent to log7(a)logb(7) \log _{7}(a) \cdot \log _{b}(7) ?\newlineChoose 11 answer:\newline(A) log(7) \log (7) \newline(B) log(7a) \log (7 a) \newline(C) loga(b) \log _{a}(b) \newline(D) logb(a) \log _{b}(a)
  1. Recognize change of base formula: Recognize the use of the change of base formula.\newlineThe expression log7(a)logb(7)\log_{7}(a)\cdot\log_{b}(7) suggests the use of the change of base formula, which is logc(a)=logd(a)logd(c)\log_{c}(a) = \frac{\log_d(a)}{\log_d(c)} for any positive numbers aa, cc, and dd (where a,c1a, c \neq 1).
  2. Apply change of base formula to log: Apply the change of base formula to logb(7)\log_{b}(7).\newlineWe can rewrite logb(7)\log_{b}(7) using the change of base formula with a new base, which we'll choose as 'a'. This gives us logb(7)=loga(7)loga(b)\log_{b}(7) = \frac{\log_{a}(7)}{\log_{a}(b)}.
  3. Substitute expression from Step 22: Substitute the expression from Step 22 into the original expression.\newlineNow we replace logb(7)\log_{b}(7) in the original expression with the result from Step 22, which gives us log7(a)(loga(7)loga(b))\log_{7}(a) \cdot \left(\frac{\log_{a}(7)}{\log_{a}(b)}\right).
  4. Simplify the expression: Simplify the expression.\newlineWe notice that log7(a)\log_{7}(a) and loga(7)\log_{a}(7) are inverses of each other, meaning their product is 11. So, the expression simplifies to 1loga(b)\frac{1}{\log_{a}(b)}.
  5. Recognize simplified expression as a logarithm: Recognize the simplified expression as a logarithm.\newlineThe expression 1loga(b)\frac{1}{\log_a(b)} is the same as logb(a)\log_{b}(a) by the definition of the reciprocal of a logarithm.
  6. Match simplified expression to answer choices: Match the simplified expression to the answer choices.\newlineThe expression logb(a)\log_{b}(a) corresponds to answer choice (D).

More problems from Product property of logarithms