Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which of the following is equivalent to 
log_(3)(b)*log_(b)(27) ?
Choose 1 answer:
(A) 3
(B) 9
(C) 
log(9)
(D) 
log_(b)(3)

Which of the following is equivalent to log3(b)logb(27) \log _{3}(b) \cdot \log _{b}(27) ?\newlineChoose 11 answer:\newline(A) 33\newline(B) 99\newline(C) log(9) \log (9) \newline(D) logb(3) \log _{b}(3)

Full solution

Q. Which of the following is equivalent to log3(b)logb(27) \log _{3}(b) \cdot \log _{b}(27) ?\newlineChoose 11 answer:\newline(A) 33\newline(B) 99\newline(C) log(9) \log (9) \newline(D) logb(3) \log _{b}(3)
  1. Recognize Change of Base: Recognize the use of the change of base formula. The expression log3(b)logb(27)\log_{3}(b)\cdot\log_{b}(27) involves two logarithms with different bases. We can use the change of base formula to rewrite logb(27)\log_{b}(27) in terms of a common base, such as base 33. Change of Base Formula: logb(A)=logc(A)logc(b)\log_{b}(A) = \frac{\log_{c}(A)}{\log_{c}(b)}
  2. Apply Formula to log: Apply the change of base formula to logb(27)\log_{b}(27). Using the change of base formula, we can write logb(27)\log_{b}(27) as log3(27)log3(b)\frac{\log_{3}(27)}{\log_{3}(b)}. logb(27)=log3(27)log3(b)\log_{b}(27) = \frac{\log_{3}(27)}{\log_{3}(b)}
  3. Simplify log3(27)\log_{3}(27): Simplify log3(27)\log_{3}(27).\newlineSince 2727 is 333^3, log3(27)\log_{3}(27) simplifies to 33.\newlinelog3(27)=3\log_{3}(27) = 3
  4. Substitute Simplified Value: Substitute the simplified value into the expression.\newlineNow we substitute log3(27)=3\log_{3}(27) = 3 into the expression from Step 22.\newlinelog3(b)logb(27)=log3(b)(3log3(b))\log_{3}(b)\cdot\log_{b}(27) = \log_{3}(b) \cdot \left(\frac{3}{\log_{3}(b)}\right)
  5. Simplify the Expression: Simplify the expression.\newlineWe notice that log3(b)\log_{3}(b) in the numerator and denominator will cancel out, leaving us with just 33.\newlinelog3(b)×(3log3(b))=3\log_{3}(b) \times (\frac{3}{\log_{3}(b)}) = 3

More problems from Product property of logarithms