Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which of the following expressions is equivalent to 
6root(3)(640f^(2)g^(9)) ?
Choose 1 answer:
(A) 
60 fg^(4)root(3)(8g)
(B) 
60g^(3)root(3)(4f^(2))
(C) 
48 fg^(4)root(3)(10 g)
(D) 
24g^(3)root(3)(10f^(2))

Which of the following expressions is equivalent to \newline6640f2g936\sqrt[3]{640f^{2}g^{9}} ?\newlineChoose 11 answer:\newline(A) 60fg48g360 fg^{4}\sqrt[3]{8g}\newline(B) 60g34f2360g^{3}\sqrt[3]{4f^{2}}\newline(C) 48fg410g348 fg^{4}\sqrt[3]{10 g}\newline(D) 24g310f2324g^{3}\sqrt[3]{10f^{2}}

Full solution

Q. Which of the following expressions is equivalent to \newline6640f2g936\sqrt[3]{640f^{2}g^{9}} ?\newlineChoose 11 answer:\newline(A) 60fg48g360 fg^{4}\sqrt[3]{8g}\newline(B) 60g34f2360g^{3}\sqrt[3]{4f^{2}}\newline(C) 48fg410g348 fg^{4}\sqrt[3]{10 g}\newline(D) 24g310f2324g^{3}\sqrt[3]{10f^{2}}
  1. Simplify Inside Cube Root: First, let's simplify the inside of the cube root. 640640 can be broken down into prime factors: 640=27×5640 = 2^7 \times 5.
  2. Take Out Perfect Cubes: Now, let's take out everything that's a perfect cube. 272^7 can be broken down into 26×22^6 \times 2, where 262^6 is a perfect cube (22)3(2^2)^3. So we can take 222^2 out of the cube root.
  3. Factor Out g9g^9: For g9g^9, since 99 is a multiple of 33, we can take g3g^3 out of the cube root.
  4. Final Simplification: Now we have 6×22×g3×6 \times 2^2 \times g^3 \times cube root of (2×5×f2)(2 \times 5 \times f^2). This simplifies to 6×4×g3×6 \times 4 \times g^3 \times cube root of (10f2)(10f^2).
  5. Multiply and Simplify: Multiplying 66 by 44 gives us 2424. So we have 24g3×10f2324g^3 \times \sqrt[3]{10f^2}.
  6. Match with Answer Choices: Looking at the answer choices, the expression that matches our result is (D) 24g310f2324g^{3}\sqrt[3]{10f^{2}}.

More problems from Find derivatives of using multiple formulae