Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[g(x)=sqrt(2x-9)],[g^(')(x)=?]:}
Choose 1 answer:
(A) 
(sqrt(2x-9))/(2)
(B) 
(1)/(sqrt(2x-9))
(C) 
(1)/(2sqrt(2x-9))
(D) 
(1)/(sqrtx)

g(x)=2x9g(x)=? \begin{array}{l} g(x)=\sqrt{2 x-9} \\ g^{\prime}(x)=? \end{array} \newlineChoose 11 answer:\newline(A) 2x92 \frac{\sqrt{2 x-9}}{2} \newline(B) 12x9 \frac{1}{\sqrt{2 x-9}} \newline(C) 122x9 \frac{1}{2 \sqrt{2 x-9}} \newline(D) 1x \frac{1}{\sqrt{x}}

Full solution

Q. g(x)=2x9g(x)=? \begin{array}{l} g(x)=\sqrt{2 x-9} \\ g^{\prime}(x)=? \end{array} \newlineChoose 11 answer:\newline(A) 2x92 \frac{\sqrt{2 x-9}}{2} \newline(B) 12x9 \frac{1}{\sqrt{2 x-9}} \newline(C) 122x9 \frac{1}{2 \sqrt{2 x-9}} \newline(D) 1x \frac{1}{\sqrt{x}}
  1. Identify Functions: First, let's identify the outer function and the inner function. The outer function is the square root function, and the inner function is (2x9)(2x-9). We will denote the outer function as f(u)=uf(u) = \sqrt{u} and the inner function as u(x)=2x9u(x) = 2x-9.
  2. Derivative of Outer Function: Now we need to find the derivative of the outer function f(u)f(u) with respect to uu. The derivative of u\sqrt{u} with respect to uu is 12u\frac{1}{2\sqrt{u}}.
  3. Derivative of Inner Function: Next, we find the derivative of the inner function u(x)u(x) with respect to xx. The derivative of 2x92x-9 with respect to xx is 22.
  4. Apply Chain Rule: Now we apply the chain rule: g(x)=f(u(x))u(x)g'(x) = f'(u(x)) \cdot u'(x). Substituting the derivatives we found, we get g(x)=122x92g'(x) = \frac{1}{2\sqrt{2x-9}} \cdot 2.
  5. Simplify Expression: Simplify the expression by multiplying the derivatives together. The 22 from the derivative of the inner function cancels out the 22 in the denominator of the derivative of the outer function, leaving us with g(x)=12x9g'(x) = \frac{1}{\sqrt{2x-9}}.

More problems from Power rule with rational exponents