Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which numbers are in the solution set of the inequality \frac{3}{4}(2 + \frac{2}{3}k) > -\frac{1}{2}(3k - 2)? Select all that apply.\newlineMulti-select Choices:\newline(A) 14-\frac{1}{4}\newline(B) 00\newline(C) 12\frac{1}{2}\newline(D) 12-\frac{1}{2}\newline(E) 6-6\newline(F) 3-3

Full solution

Q. Which numbers are in the solution set of the inequality 34(2+23k)>12(3k2)\frac{3}{4}(2 + \frac{2}{3}k) > -\frac{1}{2}(3k - 2)? Select all that apply.\newlineMulti-select Choices:\newline(A) 14-\frac{1}{4}\newline(B) 00\newline(C) 12\frac{1}{2}\newline(D) 12-\frac{1}{2}\newline(E) 6-6\newline(F) 3-3
  1. Simplify Inequality: Simplify both sides of the inequality.\newline\frac{3}{4}(2 + \frac{2}{3}k) > -\frac{1}{2}(3k - 2)\newline= \left(\frac{3}{4}\right)(2 + \frac{2}{3}k) > \left(-\frac{1}{2}\right)(3k - 2)\newline= \left(\frac{3}{4}\right)(2 + \frac{2}{3}k) > \left(-\frac{1}{2}\right)(3k - 2)
  2. Distribute Fractions: Distribute the fractions on both sides.\newline= \frac{3}{4} \times 2 + \frac{3}{4} \times \frac{2}{3}k > -\frac{1}{2} \times 3k + \frac{1}{2} \times 2\newline= \frac{3}{2} + \frac{1}{2}k > -\frac{3}{2}k + 1
  3. Rearrange Terms: Get all terms involving kk on one side and constant terms on the other.\frac{1}{2}k + \frac{3}{2}k > 1 - \frac{3}{2}= \frac{4}{2}k > -\frac{1}{2}= 2k > -\frac{1}{2}
  4. Solve for k: Solve for k by dividing both sides by 22.\frac{2k}{2} > \frac{-1}{2} / 2= k > -\frac{1}{4}
  5. Check Options: Check which options are greater than 14-\frac{1}{4}.
    (A) 14-\frac{1}{4} is not greater than 14-\frac{1}{4}.
    (B) 00 is greater than 14-\frac{1}{4}.
    (C) 12\frac{1}{2} is greater than 14-\frac{1}{4}.
    (D) 12-\frac{1}{2} is not greater than 14-\frac{1}{4}.
    (E) 6-6 is not greater than 14-\frac{1}{4}.
    (F) 14-\frac{1}{4}11 is not greater than 14-\frac{1}{4}.

More problems from Simplify exponential expressions using the multiplication and division rules