Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which is equal to 949^{-4}?\newlineChoices:\newline(A) 94-9^4\newline(B) 194\frac{1}{9^4}\newline(C) 1(9)4\frac{-1}{(-9)^{-4}}\newline(D) 1(9)4\frac{1}{(-9)^{-4}}

Full solution

Q. Which is equal to 949^{-4}?\newlineChoices:\newline(A) 94-9^4\newline(B) 194\frac{1}{9^4}\newline(C) 1(9)4\frac{-1}{(-9)^{-4}}\newline(D) 1(9)4\frac{1}{(-9)^{-4}}
  1. Understand 949^{-4}: Understand the expression 949^{-4}. 949^{-4} means 11 divided by 99 raised to the power of 44. Calculation: 94=1/949^{-4} = 1 / 9^4
  2. Compare choices: Compare the choices given.\newline(A) 94-9^4 is not correct because it represents 6561-6561, not a fraction.\newline(B) 194\frac{1}{9^4} is exactly what 949^{-4} simplifies to.\newline(C) 1(9)4-\frac{1}{(-9)^{-4}} simplifies to 1-1 times 16561-\frac{1}{6561}, which is 16561\frac{1}{6561}, not 1/65611/6561.\newline(D) 1(9)4\frac{1}{(-9)^{-4}} simplifies to 6561-656100 divided by 16561-\frac{1}{6561}, which is 6561-6561, not a fraction.

More problems from Understanding negative exponents

QuestionGet tutor helpright-arrow

Posted 9 months ago

QuestionGet tutor helpright-arrow

Posted 11 months ago