Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which is equal to 434^{-3}?\newlineChoices:\newline(A) (4)3-(-4)^3\newline(B) 143\frac{1}{4^3}\newline(C) (4)3(-4)^{-3}\newline(D) 434^3

Full solution

Q. Which is equal to 434^{-3}?\newlineChoices:\newline(A) (4)3-(-4)^3\newline(B) 143\frac{1}{4^3}\newline(C) (4)3(-4)^{-3}\newline(D) 434^3
  1. Understand expression 434^{-3}: Step 11: Understand the expression 434^{-3}. Rewrite 434^{-3} using the property of negative exponents, which states that an=1ana^{-n} = \frac{1}{a^n}. Calculation: 43=1434^{-3} = \frac{1}{4^3}
  2. Rewrite using negative exponents: Step 22: Match the rewritten expression with the given choices.\newlineFrom Step 11, we have 43=1/434^{-3} = 1/4^3.\newlineCheck each choice:\newline(A) (4)3=(64)=64-(-4)^3 = -(-64) = 64, not equal to 1/431/4^3.\newline(B) 1/43=1/641/4^3 = 1/64, matches our calculation.\newline(C) (4)3=1/(4)3=1/(64)(-4)^{-3} = 1/(-4)^3 = 1/(-64), not equal to 1/431/4^3.\newline(D) 43=644^3 = 64, not equal to 1/431/4^3.

More problems from Understanding negative exponents

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago