Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which is equal to 292^{-9}?\newlineChoices:\newline(A) 129\frac{1}{2^9}\newline(B) 292^9\newline(C) 1(2)9\frac{1}{(-2)^9}\newline(D) 1(2)9\frac{1}{(-2)^{-9}}

Full solution

Q. Which is equal to 292^{-9}?\newlineChoices:\newline(A) 129\frac{1}{2^9}\newline(B) 292^9\newline(C) 1(2)9\frac{1}{(-2)^9}\newline(D) 1(2)9\frac{1}{(-2)^{-9}}
  1. Understand expression 292^{-9}: Step 11: Understand the expression 292^{-9}.\newlineRewrite 292^{-9} using the property of negative exponents, which states that an=1ana^{-n} = \frac{1}{a^n}.\newlineCalculation: 29=1292^{-9} = \frac{1}{2^9}
  2. Rewrite using negative exponents: Step 22: Match the expression 129\frac{1}{2^9} with the given choices.\newlineChoices are:\newline(A) 129\frac{1}{2^9}\newline(B) 292^9\newline(C) 1(2)9\frac{1}{(-2)^9}\newline(D) 1(2)9\frac{1}{(-2)^{-9}}\newlineThe correct match is (A) 129\frac{1}{2^9}

More problems from Understanding negative exponents

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago