Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which is equal to 18371\frac{1}{83^{71}}?\newlineChoices:\newline(A) 1(83)71\frac{1}{(-83)^{71}}\newline(B) (83)71-(-83)^{71}\newline(C) 837183^{-71}\newline(D) 837183^{71}

Full solution

Q. Which is equal to 18371\frac{1}{83^{71}}?\newlineChoices:\newline(A) 1(83)71\frac{1}{(-83)^{71}}\newline(B) (83)71-(-83)^{71}\newline(C) 837183^{-71}\newline(D) 837183^{71}
  1. Understand expression: Understand the given expression 18371\frac{1}{83^{71}}. The expression represents the reciprocal of 8383 raised to the power of 7171.
  2. Apply negative exponent rule: Identify the equivalent expression for 1/83711/83^{71} using the negative exponent rule.\newlineNegative exponent rule: am=1/ama^{-m} = 1 / a^{m}\newlineApplying this rule, we can rewrite 1/83711/83^{71} as 837183^{-71}.
  3. Match equivalent expression: Match the equivalent expression 837183^{-71} with the given choices.\newline(A) 1(83)71\frac{1}{(-83)^{71}} is not equivalent because it includes a negative base.\newline(B) (83)71-(-83)^{71} is not equivalent because it represents a negative value, not a reciprocal.\newline(C) 837183^{-71} is the equivalent expression as per the negative exponent rule.\newline(D) 837183^{71} is not equivalent because it is not the reciprocal of 837183^{71}.