Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which is equal to 1273\frac{1}{27^3}?\newlineChoices:\newline(A) (27)3(-27)^{-3}\newline(B) 27327^{-3}\newline(C) 1(27)3-\frac{1}{(-27)^{-3}}\newline(D) 1(27)3\frac{1}{(-27)^3}

Full solution

Q. Which is equal to 1273\frac{1}{27^3}?\newlineChoices:\newline(A) (27)3(-27)^{-3}\newline(B) 27327^{-3}\newline(C) 1(27)3-\frac{1}{(-27)^{-3}}\newline(D) 1(27)3\frac{1}{(-27)^3}
  1. Understand expression: Understand the given expression 1273\frac{1}{27^3}. The expression 1273\frac{1}{27^3} represents the reciprocal of 2727 raised to the power of 33.
  2. Simplify 27327^3: Simplify the expression 27327^3.\newlineCalculating 27327^3 gives us 27×27×27=1968327 \times 27 \times 27 = 19683.
  3. Rewrite as 119683\frac{1}{19683}: Rewrite the given expression using the result from Step 22.\newlineThe expression 1273\frac{1}{27^3} can be rewritten as 119683\frac{1}{19683}.
  4. Identify equivalent expression: Identify the equivalent expression among the choices.\newlineWe need to find an expression that simplifies to 119683.\frac{1}{19683}.
  5. Analyze choice (A): Analyze choice (A) (27)3(-27)^{-3}. The negative exponent indicates the reciprocal, so (27)3(-27)^{-3} is equivalent to 1/(27)31/(-27)^3. However, this is not the same as 1/2731/27^3 because of the negative sign inside the parentheses.
  6. Analyze choice (B): Analyze choice (B) 27327^{-3}. The negative exponent indicates the reciprocal, so 27327^{-3} is equivalent to 1/2731/27^3. This matches our given expression.
  7. Analyze choice (C): Analyze choice (C) 1/(27)3-1/(-27)^{-3}. The negative exponent indicates the reciprocal, so 1/(27)3-1/(-27)^{-3} is equivalent to 1/(1/(27)3)-1/(1/(-27)^3), which simplifies to (27)3-(-27)^3. This introduces an unnecessary negative sign and does not match our given expression.
  8. Analyze choice (D): Analyze choice (D) 1(27)3\frac{1}{(-27)^3}. This choice has a negative sign inside the parentheses, which does not match our given expression 1273\frac{1}{27^3}.
  9. Conclude correct answer: Conclude the correct answer.\newlineBased on the analysis, the expression that is equal to 1273\frac{1}{27^3} is 27327^{-3}.