Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which is equal to 1238\frac{1}{23^8}?\newlineChoices:\newline(A) 23823^{-8}\newline(B) 238-23^8\newline(C) (23)8(-23)^8\newline(D) 1238-\frac{1}{23^{-8}}

Full solution

Q. Which is equal to 1238\frac{1}{23^8}?\newlineChoices:\newline(A) 23823^{-8}\newline(B) 238-23^8\newline(C) (23)8(-23)^8\newline(D) 1238-\frac{1}{23^{-8}}
  1. Understand expression: Understand the given expression 1238\frac{1}{23^8}. The expression represents the reciprocal of 2323 raised to the power of 88.
  2. Apply negative exponent rule: Apply the negative exponent rule.\newlineThe negative exponent rule states that am=1ama^{-m} = \frac{1}{a^m}. Therefore, to express 1238\frac{1}{23^8} with a negative exponent, we would write it as 23823^{-8}.
  3. Match with choices: Match the expression with the given choices.\newlineThe expression 23823^{-8} matches choice (A) 23823^{-8}.
  4. Eliminate incorrect choices: Eliminate the incorrect choices.\newline(B) 238-23^8 implies a negative base raised to a positive power, which is not a reciprocal.\newline(C) (23)8(-23)^8 implies a negative base raised to an even power, which would result in a positive value, not a reciprocal.\newline(D) 1238-\frac{1}{23^{-8}} implies a negative reciprocal of a negative exponent, which is not equivalent to the given expression.