Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which is equal to 127\frac{1}{2^7}?\newlineChoices:\newline(A) 272^{-7}\newline(B) 1(2)7-\frac{1}{(-2)^{-7}}\newline(C) 127\frac{1}{2^{-7}}\newline(D) (2)7(-2)^7

Full solution

Q. Which is equal to 127\frac{1}{2^7}?\newlineChoices:\newline(A) 272^{-7}\newline(B) 1(2)7-\frac{1}{(-2)^{-7}}\newline(C) 127\frac{1}{2^{-7}}\newline(D) (2)7(-2)^7
  1. Understand expression 127\frac{1}{2^7}: Step 11: Understand the expression 127\frac{1}{2^7}.\newlineRewrite 127\frac{1}{2^7} using negative exponents.\newline127=27\frac{1}{2^7} = 2^{-7}
  2. Rewrite using negative exponents: Step 22: Match the rewritten expression with the given choices.\newlineCompare 272^{-7} to each choice:\newline(A) 272^{-7} matches exactly.\newline(B) 1/(2)7-1/(-2)^{-7} does not match because of the negative signs and reciprocal.\newline(C) 1/271/2^{-7} is the reciprocal of 272^7, not 272^{-7}.\newline(D) (2)7(-2)^7 is not a reciprocal form and involves a negative base.

More problems from Understanding negative exponents

QuestionGet tutor helpright-arrow

Posted 9 months ago

QuestionGet tutor helpright-arrow

Posted 11 months ago