Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which is equal to 1177\frac{1}{17^7}?\newlineChoices:\newline(A) (17)7-(-17)^7\newline(B) 1177\frac{1}{17^{-7}}\newline(C) 17717^{-7}\newline(D) 1(17)7-\frac{1}{(-17)^{-7}}

Full solution

Q. Which is equal to 1177\frac{1}{17^7}?\newlineChoices:\newline(A) (17)7-(-17)^7\newline(B) 1177\frac{1}{17^{-7}}\newline(C) 17717^{-7}\newline(D) 1(17)7-\frac{1}{(-17)^{-7}}
  1. Understand expression: Understand the given expression 1177\frac{1}{17^7}. The expression 1177\frac{1}{17^7} represents the reciprocal of 1717 raised to the power of 77.
  2. Compare with choices: Compare the given expression to the choices.\newlineWe need to find an expression that is equivalent to 1177\frac{1}{17^7}. Let's analyze the choices one by one.\newline(A) (17)7(-17)^7 is not equivalent because it represents a negative value, while 1177\frac{1}{17^7} is positive.
  3. Analysis of choice A: Continue comparing the given expression to the choices.\newline(B) 1177\frac{1}{17^{-7}} uses the negative exponent rule, which states that am=1ama^{-m} = \frac{1}{a^m}. Therefore, 1177\frac{1}{17^{-7}} is equivalent to 17717^7, not 1177\frac{1}{17^7}.
  4. Analysis of choice B: Continue comparing the given expression to the choices.\newline(C) 17717^{-7} uses the negative exponent rule, which states that am=1/ama^{-m} = 1/a^{m}. Therefore, 17717^{-7} is equivalent to 1/1771/17^{7}.
  5. Analysis of choice C: Continue comparing the given expression to the choices.\newline(D) 1(17)7-\frac{1}{(-17)^{-7}} is not equivalent because it represents a negative value, while 1177\frac{1}{17^7} is positive.