Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which expressions are equivalent to (b^(2))^((1)/(9)) ?
Choose all answers that apply:
(A) (b^(-(1)/(9)))^(2)
(B) (b^((1)/(9)))^(2)
(C) (b^((1)/(2)))^(9)
(D) None of the above

Which expressions are equivalent to (b2)19(b^{2})^{\frac{1}{9}} ?\newlineChoose all answers that apply:\newline(A)(A) (b19)2(b^{-\frac{1}{9}})^{2}\newline(B)(B) (b19)2(b^{\frac{1}{9}})^{2}\newline(C)(C) (b12)9(b^{\frac{1}{2}})^{9}\newline(D)(D) None of the above

Full solution

Q. Which expressions are equivalent to (b2)19(b^{2})^{\frac{1}{9}} ?\newlineChoose all answers that apply:\newline(A)(A) (b19)2(b^{-\frac{1}{9}})^{2}\newline(B)(B) (b19)2(b^{\frac{1}{9}})^{2}\newline(C)(C) (b12)9(b^{\frac{1}{2}})^{9}\newline(D)(D) None of the above
  1. Understand Exponent Properties: Understand the properties of exponents.\newlineWhen an exponent is raised to another exponent, you multiply the exponents.\newline(b2)(19)=b2(19)=b29(b^{2})^{(\frac{1}{9})} = b^{2*(\frac{1}{9})} = b^{\frac{2}{9}}
  2. Compare with Simplified Expression: Compare the given options with the simplified expression b29b^{\frac{2}{9}}. Option A: (b(19))2=b192=b29(b^{-(\frac{1}{9})})^{2} = b^{-\frac{1}{9}*2} = b^{-\frac{2}{9}}, which is not equal to b29b^{\frac{2}{9}}.
  3. Check Option A: Check option B.\newlineOption B: (b(19))2=b192=b29(b^{(\frac{1}{9})})^{2} = b^{\frac{1}{9}*2} = b^{\frac{2}{9}}, which is equal to b29b^{\frac{2}{9}}.
  4. Check Option B: Check option C.\newlineOption C: (b(12))9=b129=b92(b^{(\frac{1}{2})})^{9} = b^{\frac{1}{2}*9} = b^{\frac{9}{2}}, which is not equal to b29b^{\frac{2}{9}}.
  5. Check Option C: Determine the correct answers based on the calculations.\newlineOnly option B is equivalent to b29b^{\frac{2}{9}}.

More problems from Multiplication with rational exponents