Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which expressions are equivalent to 
(4^(-3))/(4^(-1)) ?
Choose 2 answers:
(A) 
(4^(1))/(4^(3))
(B) 
(1)/(4^(2))
c. 
4^(3)*4^(1)
D 
(4^(-1))^(-3)

Which expressions are equivalent to 4341 \frac{4^{-3}}{4^{-1}} ?\newlineChoose 22 answers:\newline(A) 4143 \frac{4^{1}}{4^{3}} \newline(B) 142 \frac{1}{4^{2}} \newlinec. 4341 4^{3} \cdot 4^{1} \newlineD (41)3 \left(4^{-1}\right)^{-3}

Full solution

Q. Which expressions are equivalent to 4341 \frac{4^{-3}}{4^{-1}} ?\newlineChoose 22 answers:\newline(A) 4143 \frac{4^{1}}{4^{3}} \newline(B) 142 \frac{1}{4^{2}} \newlinec. 4341 4^{3} \cdot 4^{1} \newlineD (41)3 \left(4^{-1}\right)^{-3}
  1. Simplify Exponential Expression: Simplify the given expression using the properties of exponents.\newlineWhen dividing exponential expressions with the same base, subtract the exponents.\newline(43)/(41)=43(1)=43+1=42(4^{-3})/(4^{-1}) = 4^{-3 - (-1)} = 4^{-3 + 1} = 4^{-2}
  2. Compare with Options: Compare the simplified expression with the given options.\newlineWe have simplified the expression to 424^{-2}. Now we need to see which options are equivalent to this expression.\newlineOption (A) (41)/(43)(4^{1})/(4^{3}) simplifies to 413=424^{1-3} = 4^{-2}.\newlineOption (B) (1)/(42)(1)/(4^{2}) is already in the form 424^{-2}.\newlineOption (C) 43414^{3}*4^{1} simplifies to 43+1=444^{3+1} = 4^{4}, which is not equivalent.\newlineOption (D) (41)(3)(4^{-1})^{(-3)} simplifies to 413=434^{-1 * -3} = 4^{3}, which is not equivalent.
  3. Identify Correct Options: Identify the correct options.\newlineFrom Step 22, we can see that Option (A) and Option (B) are equivalent to the simplified expression 424^{-2}.

More problems from Multiplication with rational exponents