Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which expressions are equivalent to 
(4^(-3))/(4^(-1)) ?
Choose 2 answers:
A 
(4^(1))/(4^(3))
B 
(1)/(4^(2))
c] 
4^(3)*4^(1)
D 
(4^(-1))^(-3)

Which expressions are equivalent to 4341 \frac{4^{-3}}{4^{-1}} ?\newlineChoose 22 answers:\newlineA 4143 \frac{4^{1}}{4^{3}} \newlineB 142 \frac{1}{4^{2}} \newlinec] 4341 4^{3} \cdot 4^{1} \newlineD (41)3 \left(4^{-1}\right)^{-3}

Full solution

Q. Which expressions are equivalent to 4341 \frac{4^{-3}}{4^{-1}} ?\newlineChoose 22 answers:\newlineA 4143 \frac{4^{1}}{4^{3}} \newlineB 142 \frac{1}{4^{2}} \newlinec] 4341 4^{3} \cdot 4^{1} \newlineD (41)3 \left(4^{-1}\right)^{-3}
  1. Simplify using quotient rule: Simplify the expression using the quotient rule for exponents. The quotient rule states that when dividing like bases, you subtract the exponents. (43)/(41)=43(1)=43+1=42(4^{-3})/(4^{-1}) = 4^{-3 - (-1)} = 4^{-3 + 1} = 4^{-2}
  2. Check answer choices: Check each answer choice to see if it simplifies to 424^{-2}.
    A) (41)/(43)=413=42(4^{1})/(4^{3}) = 4^{1-3} = 4^{-2}
    This matches our simplified expression from Step 11.
  3. Continue checking: Continue checking the other answer choices.\newlineB) (1)/(42)=40/42=4(02)=42(1)/(4^{2}) = 4^{0} / 4^{2} = 4^{(0-2)} = 4^{-2}\newlineThis also matches our simplified expression from Step 11.
  4. Check remaining choices: Check the remaining answer choices.\newlineC) 43×41=43+1=444^{3}\times4^{1} = 4^{3+1} = 4^{4}\newlineThis does not match our simplified expression from Step 11.
  5. Check last choice: Check the last answer choice.\newlineD) (41)3=41×3=43(4^{-1})^{-3} = 4^{-1 \times -3} = 4^{3}\newlineThis does not match our simplified expression from Step 11.

More problems from Multiplication with rational exponents