Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which expression is equivalent to 85×458^5 \times 4^5?\newlineChoices:\newline(A) 1325\frac{1}{32^5}\newline(B) 322532^{25}\newline(C) 32532^5\newline(D) 321032^{10}

Full solution

Q. Which expression is equivalent to 85×458^5 \times 4^5?\newlineChoices:\newline(A) 1325\frac{1}{32^5}\newline(B) 322532^{25}\newline(C) 32532^5\newline(D) 321032^{10}
  1. Simplify Bases: Simplify the bases.\newline8=238 = 2^3 and 4=224 = 2^2. Rewrite the original expression using these bases.\newline85×45=(23)5×(22)58^5 \times 4^5 = (2^3)^5 \times (2^2)^5
  2. Apply Power Rule: Apply the power of a power rule.\newline(23)5=2(3×5)(2^3)^5 = 2^{(3\times5)} and (22)5=2(2×5)(2^2)^5 = 2^{(2\times5)}\newline2(3×5)×2(2×5)=215×2102^{(3\times5)} \times 2^{(2\times5)} = 2^{15} \times 2^{10}
  3. Add Exponents: Add the exponents since the bases are the same.\newline215×210=2(15+10)=2252^{15} \times 2^{10} = 2^{(15+10)} = 2^{25}
  4. Recognize Error: Recognize the error in exponent calculation.\newline2252^{25} is not an option in the choices, recheck calculations.\newline215×2102^{15} \times 2^{10} should be 2(15+10)=2252^{(15+10)} = 2^{25}, but we need to express it in terms of 3232.\newline32=2532 = 2^{5}, so 225=(25)5=3252^{25} = (2^{5})^{5} = 32^{5}

More problems from Identify equivalent expressions involving exponents I

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago