Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which expression is equivalent to 23×282^3 \times 2^8?\newlineChoices:\newline(A) 2242^{24}\newline(B) 1224\frac{1}{2^{24}}\newline(C) 1211\frac{1}{2^{11}}\newline(D) 2112^{11}

Full solution

Q. Which expression is equivalent to 23×282^3 \times 2^8?\newlineChoices:\newline(A) 2242^{24}\newline(B) 1224\frac{1}{2^{24}}\newline(C) 1211\frac{1}{2^{11}}\newline(D) 2112^{11}
  1. Identify Base and Exponents: Identify the base and the exponents.\newlineIn 232^3 and 282^8, 22 is the base raised to the exponents 33 and 88 respectively.\newlineBase: 22\newlineExponents: 33, 88
  2. Rewrite as Single Power: Given expression: 23×282^3 \times 2^8\newlineRewrite this expression as a single power of 22.\newlineWhen we multiply powers with the same base, we add the exponents.\newline23×282^3 \times 2^8\newline=23+8= 2^{3+8}\newline=211= 2^{11}
  3. Choose Equivalent Expression: Choose the equivalent expression for 23×282^3 \times 2^8.\newline23×28=2112^3 \times 2^8 = 2^{11}\newline23×282^3 \times 2^8 is equivalent to 2112^{11}.

More problems from Identify equivalent expressions involving exponents I

QuestionGet tutor helpright-arrow

Posted 9 months ago

QuestionGet tutor helpright-arrow

Posted 11 months ago