Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which expression is equivalent to 2×222 \times 2^2?\newlineChoices:\newline(A) 123\frac{1}{2^3}\newline(B) 232^3\newline(C) 222^2\newline(D) 122\frac{1}{2^2}

Full solution

Q. Which expression is equivalent to 2×222 \times 2^2?\newlineChoices:\newline(A) 123\frac{1}{2^3}\newline(B) 232^3\newline(C) 222^2\newline(D) 122\frac{1}{2^2}
  1. Identify Base and Exponents: Identify the base and the exponents.\newlineIn the expression 2×222 \times 2^2, 22 is the base raised to the exponents 11 and 22 respectively.\newlineBase: 22\newlineExponents: 11, 22
  2. Rewrite Expression as Single Power: Given expression: 21×222^1 \times 2^2\newlineRewrite this expression as a single power of 22.\newlineWhen we multiply powers with the same base, we add the exponents.\newline21×222^1 \times 2^2\newline=21+2= 2^{1+2}\newline=23= 2^3
  3. Simplify 232^3: Simplify 232^3.$23=2×2×2\$2^3 = 2 \times 2 \times 2\)=4×2$= 4 \times 2\$=8= 8\)
  4. Choose Equivalent Expression: Choose the equivalent expression for 2×222 \times 2^2. \newline2×22=232 \times 2^2 = 2^3\newline2×222 \times 2^2 is equivalent to 88, which is the same as 232^3.

More problems from Identify equivalent expressions involving exponents I

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago