Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which decimal is equivalent to 
(31)/(9) ?
Choose 1 answer:
(A) 
0. bar(4)
(B) 0.4444
(c) 
3. bar(4)
(D) 3.4444

Which decimal is equivalent to 319 \frac{31}{9} ?\newlineChoose 11 answer:\newline(A) 0.4 0 . \overline{4} \newline(B) 00.44444444\newline(C) 3.4 3 . \overline{4} \newline(D) 33.44444444

Full solution

Q. Which decimal is equivalent to 319 \frac{31}{9} ?\newlineChoose 11 answer:\newline(A) 0.4 0 . \overline{4} \newline(B) 00.44444444\newline(C) 3.4 3 . \overline{4} \newline(D) 33.44444444
  1. Divide by 99: Divide 3131 by 99 to find the decimal equivalent.\newline31÷9=331 \div 9 = 3 remainder 44
  2. Find Decimal Part: Since there is a remainder, we need to continue the division to find the decimal part.\newlineThe remainder 44 becomes 4040 when we add a decimal point and a zero to continue the division.\newline40÷9=440 \div 9 = 4 with a remainder of 44.
  3. Identify Repeating Decimal: Notice that the remainder is repeating. We will get the same remainder of 44 every time we bring down a zero, which means the digit 44 will repeat indefinitely in the decimal part.\newlineThis gives us a repeating decimal of 3.4444...3.4444..., which can be written as 3.43.\overline{4}.

More problems from Identify equivalent linear expressions