Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the volume of a sphere with a diameter of 6.7 in, rounded to the nearest tenth of a cubic inch?
Answer: in 
^(3)

What is the volume of a sphere with a diameter of 66.77 in\text{in}, rounded to the nearest tenth of a cubic inch?\newlineAnswer: in\text{in} 3 ^{3}

Full solution

Q. What is the volume of a sphere with a diameter of 66.77 in\text{in}, rounded to the nearest tenth of a cubic inch?\newlineAnswer: in\text{in} 3 ^{3}
  1. Identify formula for volume: Identify the formula for the volume of a sphere.\newlineThe formula for the volume of a sphere is V=43πr3V = \frac{4}{3}\pi r^3, where rr is the radius of the sphere.
  2. Calculate radius: Calculate the radius of the sphere.\newlineThe diameter of the sphere is given as 6.76.7 inches. The radius is half of the diameter, so r=diameter2=6.7 inches2=3.35r = \frac{\text{diameter}}{2} = \frac{6.7 \text{ inches}}{2} = 3.35 inches.
  3. Substitute radius into formula: Substitute the radius into the volume formula.\newlineV=43π(3.35 inches)3V = \frac{4}{3}\pi(3.35 \text{ inches})^3
  4. Calculate volume using radius: Calculate the volume using the radius value. V=43π(3.35 inches)3=43π(3.35 inches×3.35 inches×3.35 inches)V = \frac{4}{3}\pi(3.35 \text{ inches})^3 = \frac{4}{3}\pi(3.35 \text{ inches} \times 3.35 \text{ inches} \times 3.35 \text{ inches})
  5. Perform multiplication: Perform the multiplication.\newlineV=(43)π(37.595875 inches3)(43)×3.14159×37.595875 inches3V = \left(\frac{4}{3}\right)\pi(37.595875 \text{ inches}^3) \approx \left(\frac{4}{3}\right) \times 3.14159 \times 37.595875 \text{ inches}^3
  6. Calculate numerical value: Calculate the numerical value.\newlineV43×3.14159×37.595875V \approx \frac{4}{3} \times 3.14159 \times 37.595875 inches34.18879×37.595875^3 \approx 4.18879 \times 37.595875 inches3157.464^3 \approx 157.464 cubic inches
  7. Round volume: Round the volume to the nearest tenth of a cubic inch. V157.5V \approx 157.5 cubic inches (rounded to the nearest tenth)

More problems from Convert between customary and metric systems