Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the volume of a sphere with a diameter of 
24.7m, rounded to the nearest tenth of a cubic meter?
Answer: 
m^(3)

What is the volume of a sphere with a diameter of 24.7 m 24.7 \mathrm{~m} , rounded to the nearest tenth of a cubic meter?\newlineAnswer: m3 \mathrm{m}^{3}

Full solution

Q. What is the volume of a sphere with a diameter of 24.7 m 24.7 \mathrm{~m} , rounded to the nearest tenth of a cubic meter?\newlineAnswer: m3 \mathrm{m}^{3}
  1. Identify formula: Identify the formula to calculate the volume of a sphere.\newlineThe formula for the volume of a sphere is V=43πr3V = \frac{4}{3}\pi r^3, where rr is the radius of the sphere.
  2. Calculate radius: Calculate the radius of the sphere.\newlineThe diameter of the sphere is given as 24.724.7 meters. The radius is half of the diameter, so r=diameter2=24.7m2=12.35mr = \frac{\text{diameter}}{2} = \frac{24.7\,\text{m}}{2} = 12.35\,\text{m}.
  3. Substitute radius: Substitute the radius into the volume formula.\newlineV=43π(12.35m)3V = \frac{4}{3}\pi(12.35\,\text{m})^3
  4. Calculate volume: Calculate the volume using the radius value. V=(43)π(12.35m)3=(43)π(12.35m×12.35m×12.35m)V = \left(\frac{4}{3}\right)\pi(12.35\,\text{m})^3 = \left(\frac{4}{3}\right)\pi(12.35\,\text{m} \times 12.35\,\text{m} \times 12.35\,\text{m})
  5. Perform multiplication: Perform the multiplication to find the volume before rounding.\newlineV43π(1881.6225m3)43×3.14159×1881.6225m34×3.14159×627.2075m37853.9817m3V \approx \frac{4}{3}\pi(1881.6225m^3) \approx \frac{4}{3} \times 3.14159 \times 1881.6225m^3 \approx 4 \times 3.14159 \times 627.2075m^3 \approx 7853.9817m^3
  6. Round volume: Round the volume to the nearest tenth of a cubic meter. V7853.9817m3V \approx 7853.9817\,\text{m}^3 rounded to the nearest tenth is 7854.0m37854.0\,\text{m}^3.

More problems from Convert between customary and metric systems