Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the volume of a sphere with a diameter of 
2.3ft, rounded to the nearest tenth of a cubic foot?
Answer: 
ft^(3)

What is the volume of a sphere with a diameter of 2.3ft 2.3 \mathrm{ft} , rounded to the nearest tenth of a cubic foot?\newlineAnswer: ft3 \mathrm{ft}^{3}

Full solution

Q. What is the volume of a sphere with a diameter of 2.3ft 2.3 \mathrm{ft} , rounded to the nearest tenth of a cubic foot?\newlineAnswer: ft3 \mathrm{ft}^{3}
  1. Find Radius: To find the volume of a sphere, we use the formula V=43πr3V = \frac{4}{3}\pi r^3, where rr is the radius of the sphere. First, we need to find the radius of the sphere. The radius is half of the diameter.\newlineRadius (rr) = Diameter / 22\newliner=2.3 ft2r = \frac{2.3 \text{ ft}}{2}
  2. Calculate Radius: Now, let's calculate the radius.\newliner=2.3ft2r = \frac{2.3 \, \text{ft}}{2}\newliner=1.15ftr = 1.15 \, \text{ft}
  3. Substitute and Calculate Volume: Next, we will substitute the radius into the volume formula and calculate the volume. V=43π(1.15ft)3V = \frac{4}{3}\pi(1.15 \, \text{ft})^3
  4. Calculate Volume: Now, we calculate the volume using the value of the radius. \newlineV=43π(1.15ft)3V = \frac{4}{3}\pi(1.15 \, \text{ft})^3\newlineV43×3.14159×(1.15ft)3V \approx \frac{4}{3} \times 3.14159 \times (1.15 \, \text{ft})^3\newlineV4.18879×1.521375ft3V \approx 4.18879 \times 1.521375 \, \text{ft}^3
  5. Perform Multiplication: Let's perform the multiplication to find the volume.\newlineV4.18879×1.521375ft3V \approx 4.18879 \times 1.521375 \, \text{ft}^3\newlineV6.3717ft3V \approx 6.3717 \, \text{ft}^3
  6. Round Volume: Finally, we round the volume to the nearest tenth of a cubic foot. V6.4ft3V \approx 6.4 \, \text{ft}^3

More problems from Convert between customary and metric systems