Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the volume of a hemisphere with a radius of 8 in, rounded to the nearest tenth of a cubic inch?
Answer: in 
^(3)

What is the volume of a hemisphere with a radius of 88 in\text{in}, rounded to the nearest tenth of a cubic inch?\newlineAnswer: in\text{in} 3 ^{3}

Full solution

Q. What is the volume of a hemisphere with a radius of 88 in\text{in}, rounded to the nearest tenth of a cubic inch?\newlineAnswer: in\text{in} 3 ^{3}
  1. Recall Sphere Volume Formula: Recall the formula for the volume of a sphere.\newlineThe volume of a sphere is given by the formula V=43πr3 V = \frac{4}{3}\pi r^3 , where r r is the radius of the sphere. Since a hemisphere is half of a sphere, we will need to divide the volume of a sphere by 22 to get the volume of a hemisphere.
  2. Calculate Full Sphere Volume: Calculate the volume of a full sphere with the given radius.\newlineUsing the radius r=8 r = 8 inches, we substitute into the formula for the volume of a sphere:\newlineVsphere=43π(8)3 V_{sphere} = \frac{4}{3}\pi (8)^3 \newlineVsphere=43π(512) V_{sphere} = \frac{4}{3}\pi (512) \newlineVsphere=43×512×π V_{sphere} = \frac{4}{3} \times 512 \times \pi \newlineVsphere=2048×π V_{sphere} = 2048 \times \pi
  3. Calculate Hemisphere Volume: Calculate the volume of the hemisphere.\newlineSince the hemisphere is half of the sphere, we divide the volume of the sphere by 22:\newlineVhemisphere=Vsphere2 V_{hemisphere} = \frac{V_{sphere}}{2} \newlineVhemisphere=2048×π2 V_{hemisphere} = \frac{2048 \times \pi}{2} \newlineVhemisphere=1024×π V_{hemisphere} = 1024 \times \pi
  4. Evaluate Hemisphere Volume: Evaluate the volume of the hemisphere and round to the nearest tenth.\newlineVhemisphere=1024×π V_{hemisphere} = 1024 \times \pi \newlineUsing the approximation π3.1416 \pi \approx 3.1416 , we get:\newlineVhemisphere1024×3.1416 V_{hemisphere} \approx 1024 \times 3.1416 \newlineVhemisphere3216.9984 V_{hemisphere} \approx 3216.9984 cubic inches\newlineNow, round to the nearest tenth:\newlineVhemisphere3217.0 V_{hemisphere} \approx 3217.0 cubic inches

More problems from Convert between customary and metric systems